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I n t r o d u c t i o n

Welcome to the Optimization Module User’s Guide. The capabilities of the 
Optimization Module can be used in conjunction with any combination of other 
COMSOL products. This guide is a supplement to the COMSOL Multiphysics 
Reference Manual. In this section is a short Optimization Module Overview.
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Op t im i z a t i o n  Modu l e  O v e r v i ew

What Can the Optimization Module Do?

The Optimization Module can be used throughout the COMSOL product family — 
it provides a general interface for calculating optimal solutions to engineering 
problems. Any model inputs, be it geometric dimensions, part shapes, material 
properties, or material distribution, can be treated as control variables, and any model 
output can be an objective function.

Simulation is a powerful tool in science and engineering for predicting the behavior of 
physical systems, particularly those governed by partial differential equations. In many 
cases a single or a few simulations are not enough to provide sufficient understanding 
of a system. Two important classes of problems whose resolution relies on a more 
systematic exploratory process are:

• Design problems where the problem is to find the values of control variables or 
design variables that yield the best performance of a model, quantified by means of 
an objective function. Problems of this kind arise, for example, in structural 
optimization, antenna design, and process optimization.

• Inverse problems, and in particular parameter estimation in multiphysics models, 
where the problem is to reliably determine the values of a set of parameters that 
provide simulated data which best matches measured data. Such problems arise in, 
for example, geophysical imaging, nondestructive testing, and biomedical imaging. 
Curve fitting also belongs to this category.

Problems of the above types can often be formulated more generally as optimization 
problems. The Optimization interface and Optimization study step in COMSOL 
Multiphysics are useful for solving design problems as well as inverse problems and 
parameter estimation.

O P T I M I Z A T I O N  A L G O R I T H M S

There are three optimization algorithms for gradient-based optimization available in 
the module. The first algorithm is based on the SNOPT code developed by Philip E. 
Gill of the University of California San Diego, and Walter Murray and Michael A. 
Saunders of Stanford University. When using SNOPT, the objective function can have 
any form and any constraints can be applied. The algorithm uses a gradient-based 
optimization technique to find optimal designs and when the underlying PDE is 
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stationary, frequency- or time-dependent, analytic sensitivities of the objective 
function with respect to the control variables can be used.

The second algorithm is the MMA solver, which is based on the globally convergent 
method of moving asymptotes by Krister Svanberg of KTH Royal Institute of 
Technology. The MMA solver can handle objective functions and constraints of the 
same very general form as SNOPT. It is well suited to handle problems with a large 
number of control variables, such as topology optimization.

The third algorithm is a Levenberg-Marquardt solver. When this solver is used, the 
objective function must be of least-squares type. Also, constraints are not supported. 
Since the Levenberg-Marquardt method is designed to solve problems of least-squares 
type, it typically converges faster than SNOPT and MMA for such problems.

In addition, the Optimization Module provides a number of gradient-free 
(derivative-free) optimization algorithms. Currently Nelder-Mead, BOBYQA, 
COBYLA, and a coordinate search are supported. These methods can optimize a 
model with respect to design parameters (model parameters) such as parameters which 
control the geometry sequence that defines the model’s geometry. There is also a 
Monte Carlo method, useful for exploring the design space.

All optimization solvers are accessible from the same Optimization study step, which 
contains the ordinary solver sequence over which the optimization method iterates. 
The gradient-free methods can contain any other study sequence, while the 
gradient-based methods are limited to optimizing over a single study step of a type 
supporting computation of analytic sensitivities: currently Stationary, Time Dependent 
and Frequency Domain studies.

Where Do I Access the Documentation and Application Libraries? 

The Physics Interfaces and Building a COMSOL Multiphysics Model in 
the COMSOL Multiphysics Reference Manual 

Optimization model examples which do not require any other COMSOL 
add-on modules are located in the Optimization Module folder in the 
Application Libraries window. There are also other optimization models 
found in other folders for different modules. You can find all related 
examples entering optimization in the Search field.
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A number of internet resources have more information about COMSOL, including 
licensing and technical information. The electronic documentation, topic-based (or 
context-based) help, and the application libraries are all accessed through the 
COMSOL Desktop.

T H E  D O C U M E N T A T I O N  A N D  O N L I N E  H E L P

The COMSOL Multiphysics Reference Manual describes the core physics interfaces 
and functionality included with the COMSOL Multiphysics license. This book also has 
instructions about how to use COMSOL Multiphysics and how to access the 
electronic Documentation and Help content.

Opening Topic-Based Help
The Help window is useful as it is connected to the features in the COMSOL Desktop. 
To learn more about a node in the Model Builder, or a window on the Desktop, click 
to highlight a node or window, then press F1 to open the Help window, which then 
displays information about that feature (or click a node in the Model Builder followed 
by the Help button ( ). This is called topic-based (or context) help.

If you are reading the documentation as a PDF file on your computer, 
the blue links do not work to open an application or content 
referenced in a different guide. However, if you are using the Help 
system in COMSOL Multiphysics, these links work to open other 
modules, application examples, and documentation sets.

To open the Help window:

• In the Model Builder, Application Builder, or Physics Builder click a node or 
window and then press F1. 

• On any toolbar (for example, Home, Definitions, or Geometry), hover the 
mouse over a button (for example, Add Physics or Build All) and then 
press F1.

• From the File menu, click Help ( ).

• In the upper-right corner of the COMSOL Desktop, click the Help ( ) 
button.
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Opening the Documentation Window

T H E  A P P L I C A T I O N  L I B R A R I E S  W I N D O W

Each model or application includes documentation with the theoretical background 
and step-by-step instructions to create a model or application. The models and 
applications are available in COMSOL Multiphysics as MPH files that you can open 
for further investigation. You can use the step-by-step instructions and the actual 
models as templates for your own modeling. In most models, SI units are used to 
describe the relevant properties, parameters, and dimensions, but other unit systems 
are available.

Once the Application Libraries window is opened, you can search by name or browse 
under a module folder name. Click to view a summary of the model or application and 
its properties, including options to open it or its associated PDF document.

To open the Help window:

• In the Model Builder or Physics Builder click a node or window and then 
press F1.

• On the main toolbar, click the Help ( ) button.

• From the main menu, select Help>Help.

To open the Documentation window:

• Press Ctrl+F1.

• From the File menu select Help>Documentation ( ).

To open the Documentation window:

• Press Ctrl+F1.

• On the main toolbar, click the Documentation ( ) button.

• From the main menu, select Help>Documentation.

The Application Libraries Window in the COMSOL Multiphysics 
Reference Manual.
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Opening the Application Libraries Window
To open the Application Libraries window ( ):

C O N T A C T I N G  C O M S O L  B Y  E M A I L

For general product information, contact COMSOL at info@comsol.com.

C O M S O L  A C C E S S  A N D  T E C H N I C A L  S U P P O R T

To receive technical support from COMSOL for the COMSOL products, please 
contact your local COMSOL representative or send your questions to 
support@comsol.com. An automatic notification and a case number are sent to you by 
email. You can also access technical support, software updates, license information, and 
other resources by registering for a COMSOL Access account.

• From the Home toolbar, Windows menu, click ( ) Applications 

Libraries.

• From the File menu select Application Libraries.

To include the latest versions of model examples, from the File>Help 
menu, select ( ) Update COMSOL Application Library.

Select Application Libraries from the main File> or Windows> menus.

To include the latest versions of model examples, from the Help menu 
select ( ) Update COMSOL Application Library.
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C O M S O L  O N L I N E  R E S O U R C E S

COMSOL website www.comsol.com

Contact COMSOL www.comsol.com/contact

COMSOL Access www.comsol.com/access

Support Center www.comsol.com/support

Product Download www.comsol.com/product-download

Product Updates www.comsol.com/support/updates

COMSOL Blog www.comsol.com/blogs

Discussion Forum www.comsol.com/community

Events www.comsol.com/events

COMSOL Video Gallery www.comsol.com/video

Support Knowledge Base www.comsol.com/support/knowledgebase
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O p t i m i z a t i o n  a n d  S e n s i t i v i t y  T h e o r y

This chapter discusses the theory for optimization and sensitivity. In this chapter:

• Optimization Theory

• Theory for the Sensitivity Interface

• Theory for Topology Optimization
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Op t im i z a t i o n  Th e o r y

This section contains theory useful for understanding and applying The Optimization 
Interface and The Optimization Study. Topics explained in this section are:

• Basic Optimization Concepts

• Optimization Problem Formulation

• PDE-Constrained Optimization

Basic Optimization Concepts

In general there are three fundamental parts of an optimization problem — the control 
variables, the objective function and, optionally, constraints.

The optimization problem is to find the value of the control variables that minimizes 
(or maximizes) the objective function, subject to a number of constraints. The 
constraints collectively define a set, the feasible set, of permissible values for the control 
variables.

The Optimization Study together with The Optimization Interface provide a 
framework for specifying and solving general optimization problems. The objective 
function and constraints can depend indirectly on the control variables via the solution 
of a multiphysics model. See PDE-Constrained Optimization. 

Optimization Problem Formulation

The Optimization Module is built around a general single-objective minimization 
problem formulation. The Optimization Study node transforms maximization as well 
as multi-objective minimax and maximin problems internally to the canonical 
minimization form.

T H E  G E N E R A L  O P T I M I Z A T I O N  P R O B L E M

The most general formulation of an optimization problem can be written as 

 (2-1)
min

ξ   Q ξ( )

ξ C∈
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Here, the control variables are denoted by ξ, the scalar-valued objective function by Q, 
and the feasible set is denoted by C. Assuming sufficient continuity, the feasible set can 
be expressed as a set of — possibly very nonlinear — inequality constraints

where G is a vector-valued function (G is scalar-valued in case of a single constraint). 

C L A S S I C A L  O P T I M I Z A T I O N

In classical optimization, Q and G are given explicitly as closed-form expressions of 
the control variables ξ. However, design problems and parameter estimation problems 
often result in objective functions Q and constraints G that are not explicitly 
expressible as closed-form expressions of the control variables ξ.

PDE-Constrained Optimization

In multiphysics modeling, it is often desirable to let control variables parameterize the 
problem and seek to optimize a function of the PDE solution. The objective function 
is therefore a function of both the control variables and the PDE solution, which is in 
turn a function of the control variables. The multiphysics problem is a PDE, which 
after discretization is represented as a system of equations L(u(ξ), ξ) = 0, where u is the 
PDE solution and ξ the control variables.

The complete PDE-constrained optimization problem to be solved by one of the 
optimization algorithms in the Optimization Module adds the PDE problem as an 
equality constraint to the general optimization problem:

 (2-2)

It is advantageous to separate those constraints in G that are defined as explicit 
expressions of ξ only (design constraints) from those that mix u and ξ (performance 
constraints). The former group can further be divided into simple bounds, which set 

C ξ : lb G ξ( ) ub≤≤{ }=

For vectorial quantities, the inequality defining C is to be interpreted 
component-wise and lb and ub are the corresponding vectors containing 
the upper and lower bounds. 

min
ξ   Q u ξ( ) ξ,( )

L u ξ( ) ξ,( ) 0=

lb G u ξ( ) ξ,( ) ub≤≤
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a lower and upper limit directly on the control variables, and constraints on general 
expressions of the control variables. Hence, the general constraint formulation 
lb ≤ G(u(ξ), ξ) ≤ ub above is replaced by three classes of constraints:

and the optimization problem in Equation 2-2 can be written as

 (2-3)

This is the general form of the optimization problem considered in the Optimization 
Module. Control variables ξ can be either global model parameters converted into 
control variables in the Optimization study step, or control variable fields set up in an 
Optimization interface. You specify the objective function and the constraints in the 
form of expressions in ξ and u. The relation between u and ξ, which is a system of 
equations written here compactly as L(u, ξ) = 0, is given by the multiphysics model. 

S P E C I F I C A T I O N  O F  T H E  O B J E C T I V E  F U N C T I O N

The objective function is, in general, a sum of a number of terms:

where n is the space dimension of the multiphysics model and the different 
contributions in the sum above are defined as follows: 

• Qglobal is the global contribution to the objective function Q. It is given as one or 
more general global expressions, either in an Optimization study step or in a Global 
Objective node under an Optimization interface.

• Qprobe is a probe contribution to the objective function Q. It is a probe objective so 
its definition is restricted to a point on a given geometrical entity. You specify the 

lbP P ξ u,( ) ubP≤≤

lbΨ Ψ ξ( ) ubΨ≤≤

lbb ξ ubb≤≤

min 
ξ

Q u ξ( ) ξ,( )

L u ξ( ) ξ,( ) 0=

lbP P u ξ( ) ξ,( ) ubP≤≤

lbΨ Ψ ξ( ) ubΨ≤≤

lbb ξ ubb≤≤









Q u ξ,( ) Qglobal u ξ,( ) Qprobe u ξ,( ) Qint k, u ξ,( )

k 0=

n

+ +=
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probe point used for the point evaluation explicitly in a Probe Objective node under 
an Optimization interface.

• Qint,k is an integral contribution to the objective function Q. It is an integral 
objective so its definition is restricted to a set of geometric entities of the same 
dimension. Use an Integral Objective node under an Optimization interface to 
specify an integrand and a select a set of domains, boundaries, edges or points over 
which to integrate. For a point selection, the integration reduces to a summation.

Several global, probe, and integral contributions can be defined in separate nodes 
under an Optimization interface. In such cases, the total global, probe, and integral 
contribution is given as the sum of the contributions. If you specify one or more 
objectives directly in the Optimization study step, these are also added to the sum.

S P E C I F I C A T I O N  O F  C O N S T R A I N T S

The full nonlinear set of constraints lb ≤ G(u(ξ), ξ) ≤ ub in the general 
PDE-constrained optimization problem, Equation 2-2, are separated into three 
groups:

The first row above contains the general implicit constraints, or performance 
constraints in the case of a design problem. These are given in terms of expressions 
involving both the solution variables u and control variables ξ. The second row 
constitutes the explicit constraints — or design constraints — which are those 

lbP P ξ u,( ) ubP≤≤

lbΨ  Ψ ξ( )  ubΨ≤≤

lbb  ξ ubb≤≤
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constraints given by explicit expressions only in the control variables ξ. The last row 
contains the control variable bounds

The Optimization interface differentiates between the following constraints (in the 
description that follows, n denotes the dimension of the multiphysics model): control 
variable bounds, pointwise inequality constraints, integral inequality constraints, and 
global inequality constraints, each of which are described below 

• Bounds or control variable bounds are inequality constraints setting lower and 
upper bounds directly on each control variable degree of freedom. Hence, bound 
constraints correspond to constraints of the form lb ≤ ξ ≤ ub. They are handled 
efficiently by all solvers that support them and in many cases improve solver stability 
and efficiency.

• Pointwise inequality constraints are inequality constraints involving an explicit 
expression in terms of the control variables. The constraint sets lower and upper 
bounds on the expression for node points in a set of geometric entities of the same 
dimension.

• Global inequality constraints set upper and lower bounds on a general global 
expression, possibly involving both the control variables and the PDE solution. 
Apart from the specification of bounds, a global inequality constraint is identical to 
a Global Objective.

• Integral inequality constraints set upper and lower bounds on an integral of an 
expression, possibly involving the PDE solution and control variables, over a set of 

The reason for this subdivision is computational. Each evaluation of an 
implicit constraint requires an up-to-date solution of the multiphysics 
solution u. The gradient-based optimization methods also require a 
complete sensitivity evaluation, which is computationally demanding, see 
Choosing a Sensitivity Method in the COMSOL Multiphysics Reference 
Manual. 

Explicit constraints, in contrast, can be computed without updating the 
multiphysics solution. They can, however, be nonlinear, making it 
difficult for the optimization methods to follow an active constraint. 
Control variable bounds are the least expensive to handle, since when 
active, the optimization solver can essentially just exclude the 
corresponding control variable.
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geometric entities of the same dimension. For integral inequality constraints on 
points, the integration reduces to a summation.

Global inequality constraints and integral inequality constraints are 
structurally similar to the objective function and equally expensive to 
evaluate.
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T h e o r y  f o r  t h e  S e n s i t i v i t y  I n t e r f a c e

About Sensitivity Analysis

The Sensitivity interface is special in the sense that it does not contain any physics of 
its own. Instead, it is a tool for evaluating the sensitivity of a model with respect to 
almost any variable. The Sensitivity interface is used together with a Sensitivity study 
step, which in turn controls the Sensitivity solver extension. Simple cases can be 
handled directly in the Sensitivity study step, while more advanced cases must be set 
up in a Sensitivity interface prior to solving.

Simulation is a powerful tool for predicting the behavior of physical systems, 
particularly those that are governed by partial differential equations. However, a single 
simulation is often not enough to provide sufficient understanding of a system. Hence, 
a more exploratory process might be needed, such as sensitivity analysis, where one 
is interested in the sensitivity of a specific quantity with respect to variations in certain 
parameters included in the model. Such an analysis can, for example, be used for 
estimating modeling errors caused by uncertainties in material properties or for 
predicting the effect of a geometrical change.

Many times it is possible to reformulate problems of the above type as the problem of 
calculating derivatives, so differentiation plays a central role in solving such problems. 
The Sensitivity study step and corresponding physics interface can calculate derivatives 
of a scalar objective function with respect to a specified set of control variables. The 
objective function is in general a function of the solution to a multiphysics problem, 
which is in turn parameterized by the control variables.

Sensitivity Problem Formulation

Because the Sensitivity interface does not contain any physics, it is not intended for use 
on its own. When the physics interface is added to a multiphysics model, no new 
equations are introduced, and the set of solution variables remains the same. Instead, 
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an objective function and a set of control variables can be specified. The Sensitivity 
interface can perform these distinct tasks:

• Select control variables and set their values

• Define scalar objective functions

The companion Sensitivity study step is responsible for:

• Choosing which objective functions and control variables to solve for

• Selecting a sensitivity evaluation method

• Selecting which study step to compute sensitivities for

• Setting up the Sensitivity solver extension

Theory for Stationary Sensitivity Analysis

Evaluating the sensitivity of a scalar-valued objective function Q(ξ) with respect to the 
control variables, ξ, at a specific point, ξ0, can be rephrased as the problem of 
calculating the derivative ∂Q/∂ξ at ξ = ξ0. In the context of a multiphysics model, Q is 
usually not an explicit expression in the control variables ξ alone. Rather, Q(u(ξ), ξ) is 
also a function of the solution variables u, which are in turn implicitly functions of ξ. 

The multiphysics problem is a PDE, which after discretization is represented as a 
system of equations L(u(ξ), ξ) = 0. If the PDE has a unique solution u = L-1(ξ), the 
sensitivity problem can be informally rewritten using the chain rule as that of finding

The first term, which is an explicit partial derivative of the objective function with 
respect to the control variables, is easy to compute using symbolic differentiation. The 
second term is more difficult. Assuming that the PDE solution has N degrees of 

The control variables are independent variables whose values are not 
affected by the solution process, but they are also degrees of freedom 
(DOFs) stored in the solution vector. When defining a control variable, 
its initial value must be supplied. The initial value is used to initialize the 
control variable DOFs, which remain fixed during the solution step.

ξd
d Q u ξ( ) ξ,( )

ξ∂
∂Q

u∂
∂Q

L∂
∂u

ξ∂
∂L⋅ ⋅+=
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freedom and that there are n control variables ξi, ∂Q/∂u is an N-by-1 matrix, ∂u/∂L is 
an N-by-N matrix (because L−1 is unique), and ∂L/∂ξ is an N-by-n matrix.

The first and last factors, ∂Q/∂u and ∂L/∂ξ, can be computed directly using symbolic 
differentiation. The key to evaluating the complete expression lies in noting that the 
middle factor can be computed as ∂u/∂L = (∂L/∂u)−1 and that ∂L/∂u is the PDE 
Jacobian at the solution point:

 (2-4)

Actually evaluating the inverse of the N-by-N Jacobian matrix is too expensive. In 
order to avoid that step, an auxiliary linear problem can be introduced. This can be 
done in two different ways, each requiring at least one additional linear solution step 
(see Forward Sensitivity Methods and Adjoint Sensitivity Method below).

If an incomplete Jacobian has been detected during the sensitivity analysis, an attempt 
to assemble the complete Jacobian is done. If the assemble succeeds, the complete 
Jacobian is used in sensitivity computations in the following way:

Assume that the Jacobian  in Equation 2-4 above is incomplete and denote it by 
.

Let the complete Jacobian be . Hence, the system to solve is

 (2-5)

Using

the previous system becomes

The system of equations, L, is here assumed to include any constraints 
present in the multiphysics model. The number of degrees of freedom, N, 
therefore in theory includes also Lagrange multipliers for the constraints. 
In practice, constraints are usually eliminated, which imposes some 
restrictions on the sensitivity analysis; see The Sensitivity Analysis 
Algorithm in the COMSOL Multiphysics Reference Manual.

ξd
d Q u ξ( ) ξ,( )

ξ∂
∂Q

u∂
∂Q

u∂
∂L
 
 

1–

ξ∂
∂L⋅ ⋅+=

u∂
∂L

u∂
∂L
 
 

incomplete

u∂
∂L

u∂
∂L

ξi∂
∂u⋅

ξi∂
∂L

=

u∂
∂L

u∂
∂L
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u∂
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incomplete
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Then, the solution to the system in Equation 2-5 is approximated iteratively by

where n is the iteration number.

The iterations are terminated either when the estimated error is less than the relative 
tolerance used by the current solver (convergence), or when the number of iterations 
has reached the maximum number of iterations specified in the Fully Coupled or 
Segregated attribute node (nonconvergence).

If the previous algorithm does not converge (that is, the estimated error is larger than 
the given tolerance), the sensitivity computations are repeated using the incomplete 
Jacobian and the warning Jacobian is incomplete. No convergence when attempting 
to use the complete Jacobian is written.

If the assemble of the complete Jacobian fails, the incomplete Jacobian is used and the 
warning Unable to assemble the complete Jacobian. Using incomplete Jacobian for 
sensitivity analysis is written.

In the Optimization interface, a warning is written only if the optimization problem 
does not converge.

F O R W A R D  S E N S I T I V I T Y  M E T H O D S

To use the forward sensitivity methods, introduce the N-by-n matrix of solution 
sensitivities

These can be evaluated by solving n linear systems of equations

using the same Jacobian ∂L/∂u, evaluated at u(ξ0). Inserting the result into 
Equation 2-4, the desired sensitivities can be easily computed as

u∂
∂L
 
 

incomplete ξi∂
∂u⋅

ξi∂
∂L

u∂
∂L
 
 

incomplete u∂
∂L

– 
 

ξi∂
∂u⋅+=

u∂
∂L
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∂u
 
 

n
⋅

ξi∂
∂L

u∂
∂L
 
 

incomplete u∂
∂L
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ξi∂
∂u
 
 

n 1–
⋅+=

ξ∂
∂u

u∂
∂L
 
 

1–

ξ∂
∂L⋅=

u∂
∂L

ξi∂
∂u⋅

ξi∂
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=
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A D J O I N T  S E N S I T I V I T Y  M E T H O D

To use the adjoint sensitivity method, introduce instead the N-by-1 adjoint solution 
u∗, which is defined as

Multiplying this relation from the right with the PDE Jacobian ∂L/∂u and transposing 
leads to a single linear system of equations

using the transpose of the original PDE Jacobian.

Theory for Time-Dependent Sensitivity

F O R W A R D  S E N S I T I V I T Y

When you enable sensitivity analysis, the time-dependent solvers can compute — in 
addition to the basic forward solution — the sensitivity of a functional

 (2-6)

with respect to the control variables ξ evaluated at the final time t=T. The forward 
solution uξ is a solution to the parameterized discrete forward problem

 (2-7)

where Λξ are the constraint Lagrange multipliers, or (generalized) reaction forces, 
corresponding to the constraints M. It is assumed that Q does not explicitly depend on 
Λξ.

To compute the sensitivity of Q with respect to ξ, first apply the chain rule:

 (2-8)

ξd
d Q u ξ( ) ξ,( )

ξ∂
∂Q

u∂
∂Q

ξ∂
∂u⋅+=

u∗
u∂

∂Q
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⋅=

u∂
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=

Q Q uξ ξ T, ,( )=
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In this expression, the sensitivity of the solution with respect to the control variables, 
∂u/∂ξ, is still an unknown quantity. Therefore, differentiate the forward problem, 
Equation 2-7, formally with respect to ξ:

Here, D = −∂L/∂  K = −∂L/∂u, and N = −∂M/∂u as usual. Assuming that the 
constraint force Jacobian NF is independent of ξ (that is, ∂NF/∂ξ = 0), you can write 
the above relations in matrix form

 (2-9)

solve for the sensitivities ∂up/∂ξ and ∂Λp/∂ξ, with initial conditions ∂u0ξ/∂ξ and ∂Λ0ξ/
∂ξ, respectively, and plug them back for evaluation at t=T into Equation 2-8.

If the number of individual control variables, ξj, is small, Equation 2-9 can be solved 
for each right-hand side [∂L/∂ξj ∂Μ/∂ξj]

T with corresponding initial conditions and the 
solution inserted into Equation 2-8. This is the forward method, which in addition to 
the sensitivity dQ/dξ returns the sensitivity of the solution, ∂uξ/∂ξ. As an alternative 
the right-hand side of Equation 2-9can be calculated by finite differences using the 
forward numeric method.

If there are many control variables and the sensitivity of the solution itself, ∂uξ/∂ξ, is 
not required, the adjoint method is more efficient.

A D J O I N T  S E N S I T I V I T Y

The adjoint sensitivity method is based on using solution variables u* and U* known 
as the adjoint solution, to rewrite Equation 2-8:

Note that it has been assumed that

D
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The homogeneous adjoint equations are solved backward in time and requires “final” 
conditions for initialization. The final conditions for U* and u* are computed as:

On this form, only one forward and one backward (adjoint) problem must be solved 
regardless of the number of control variables, followed by an evaluation of the gradient 
for each variable. Obviously, this is much faster than the forward method if the number 
of variables is large with the drawback that the forward solution must be available at 
all times during the backward solution of the adjoint. To reduce the memory 
requirements for this, a checkpointing strategy is employed. This means that at a 
number of checkpoints the forward solution is stored in memory such that a hot start 
of the time-dependent solver can be performed to produce the forward solution in 
higher resolution between checkpoints when needed. This reduces the memory 
requirement at the cost of one additional forward solution.

Specification of the Objective Function

The objective function can in general be a sum of a number of terms:

where n is the space dimension of the multiphysics model and the different 
contributions in the sum above are defined as follows: 

• Qglobal is the global contribution to the objective function Q. It is given as one or 
more general global expressions.

• Qprobe is a probe contribution to the objective function Q. It is a probe objective, so 
its definition is restricted to a point on a given geometrical entity. The probe point 

Td
d U∗D

ξ∂
∂u  0=

U∗D t T=
0=

u∗D t T= u∂
∂Q

– U– ∗K
t T=

=

Q u ξ,( ) Qglobal u ξ,( ) Qprobe u ξ,( ) Qint k, u ξ,( )

k 0=

n
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used for the point evaluation is a point given by the user and has to be contained in 
the domain.

• Qint,k is an integral contribution to the objective function Q. It is an integral 
objective, so its definition is restricted to a specific set of geometrical entities of the 
same dimension. For integral contributions on points, the integration reduces to a 
summation.

Several global, probe, and integral contributions can be defined. In such cases, the 
total global, probe, and integral contribution is given as the sum of the aforementioned 
global, probe, and integral contributions that are actively selected in the solver settings 
for the optimization.

Choosing a Sensitivity Method

To evaluate sensitivities as part of a multiphysics problem solution, an auxiliary linear 
problem must be solved, in addition to the original equation, using one of these 
methods:

• Select one of the Forward Sensitivity methods to evaluate the derivatives of all 
solution variables and an optional objective function.

• Select the Adjoint Sensitivity method to look only at derivatives of a scalar objective 
function.

F O R W A R D  S E N S I T I V I T Y

Use the forward (or forward numeric) sensitivity method to solve for the derivatives 
of all dependent variables, plus an optional scalar objective function, with respect to a 
small number of control variables. The forward method requires one extra linear 
system solution for each control variable.

The linear system that must be solved is the same as the last linearizion needed for 
solving the forward model. Thus, when using a direct solver (for example, PARDISO) 
the extra work amounts only to one back-substitution per control variable DOF. The 
forward numeric method uses numerical perturbation rather than analytical methods 
to calculate forward sensitivities, and can be used when the analytical method fails for 
some reason or as a tool to verify that the analytical method is correct. In addition, the 
forward numeric method requires two additional residual evaluations. The iterative 
linear and segregated solvers can reuse preconditioners and other data but must 
otherwise perform a complete solution each time. Further, the forward numeric 
method only differentiates the PDE problem numerically (giving a numeric method 
for the forward sensitivity). The objective sensitivity is still differentiated analytically 
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(both with respect to the controls and with respect to the PDE variables). The 
functional sensitivity is therefore computed with a hybrid method.

A D J O I N T  S E N S I T I V I T Y

The adjoint method solves for the derivatives of a single scalar objective function with 
respect to any number of control variables, requiring only one single additional linear 
system solution. In addition to the objective function gradient, the discrete adjoint 
solution is computed. This quantity represents the sensitivity of the objective function 
with respect to an additional generalized force applied as a nodal force to the 
corresponding solution component.

The auxiliary linear system is in this case the transpose of the last linearizion needed for 
solving the forward model. The MUMPS and PARDISO linear solvers can solve the 
transposed problem at the cost of a back-substitution, while the SPOOLES linear 
solver needs to do a new factorization if the problem is not symmetric or Hermitian. 
The iterative solvers can reuse most preconditioning information as can the segregated 
solver, which, however, loops over the segregated steps in reversed order.

Postprocessing Sensitivities

When a multiphysics problem is solved using sensitivity analysis, the generated solution 
contains stored sensitivity data. You can access this data in postprocessing using the 
fsens and sens operators:

• fsens(<control_variable>) evaluates the sensitivity (derivative) of the objective 
function with respect to the specified control variable. This result is available for all 
sensitivity methods. The result of fsens can be evaluated on the geometric entities 
where the control variable is defined. For a global control variable, fsens is available 
everywhere. In the same way, fsensimag(<control_variable>) evaluates the 
sensitivity (derivative) of the objective function with respect to the imaginary part 
of the specified control variable.

• sens(<dependent_variable>,<control_variable>) or 
sens(<dependent_variable>,<control_DOF>) evaluates the sensitivity 
(derivative) of the specified dependent variable with respect to the specified control 

Sensitivity analysis can be used together with all stationary and parametric 
standard solvers and with the BDF solver for transient studies. The 
available solvers are described in the section Studies and Solvers in the 
COMSOL Multiphysics Reference Manual.
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variable degree of freedom. This is only possible when forward sensitivity has been 
used, which computes and stores derivatives of the entire solution vector with 
respect to each control variable degree of freedom. 

Global control variables can be identified by name. Otherwise, control variable 
degrees of freedom are identified by their index (starting from 1) among all control 
variables in the solution vector. The result of sens has the same geometric scope as 
the dependent variable argument; it can be plotted or evaluated wherever the 
dependent variable itself is available.

Issues to Consider Regarding the Control Variables

T H E  E F F E C T  O F  D I S C R E T I Z A T I O N

The sensitivity analysis is always performed on the discretized system of equations. As 
already mentioned, the control variables can be a scalar, vector, or an element in some 
infinite-dimensional function space. In the latter case, it is represented on the finite 
element mesh, just like the solution variables, or global scalar quantities. When using 
a control variable field represented on the finite element mesh, the sensitivities are 
therefore associated with individual control variable degrees of freedom rather than 
with the field value at each point. This makes it difficult to interpret the result. For 
example, if a domain control variable is set up using a first-order Lagrange shape 
function representation to control the material density in a model, the solution 
contains the sensitivity of the objective function with respect to the discrete density 
value at each node point in the mesh. Because each node influences the density in a 
small surrounding region, the size of which varies from node to node, the individual 
sensitivities are not directly comparable to each other.

Displaying such domain control variables results in a plot that is not smooth due to the 
varying element size. It must therefore not be used to draw any conclusions about the 
physics and the effect of changing the physical field represented by the control variable. 
Some insight can, however, be gained by looking at the sensitivities divided by the 
mesh volume scale factor dvol. This makes the sensitivities in the plot comparable 
between different parts of the surface but still not mathematically well defined. In 
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particular, using discontinuous constant shape functions together with the division by 
dvol results in a plot that is proportional to the true pointwise sensitivity.

G E O M E T R I C A L  S E N S I T I V I T Y

You can use the control variables directly to parameterize any aspect of the physics that 
is controlled by an expression. This applies to material properties, boundary 
conditions, loads, and sources. However, the shape, size, and position of parts of the 
geometry cannot be changed as easily at solution time and require special attention.

Control variables cannot be used directly in the geometry description. Instead, the 
model must be set up using a Deformed Geometry or Moving Mesh interface to 
control the shape of the geometry. Then use control variables to control the mesh 
movement, effectively parameterizing the geometry.  

Issues to Consider Regarding the Objective Function

T H E  P R I N C I P L E  O F  V I R T U A L  W O R K

Potential energy has a special status among scalar objective functions because its 
derivatives with respect to scalar control variables can in many cases be interpreted as 
(true or generalized) forces.

C O M P L E X - V A L U E D  O B J E C T I V E  F U N C T I O N S

Sensitivity analysis can be directly applied only when the objective function is a real 
differentiable or complex analytic function of the control variables. This is usually not 
a severe constraint, even for frequency-domain models where the PDE solution 
variables are complex valued. One reason is that physical quantities of interest to the 

If the plan is to use the sensitivities in an automatic optimization 
procedure, as is done through the Optimization interface available with 
the Optimization Module, the discrete nature of the sensitivities causes 
no additional complication. The optimization solver searches for 
optimum values of the discrete control variables using the discrete 
gradient provided by the sensitivity analysis.

See Deformed Geometry and Moving Mesh in the COMSOL 
Multiphysics Reference Manual for details about these interfaces and 
ALE in general.
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analyst are always real valued, and if complex-valued control variables are required, it 
is possible to treat the real and imaginary parts separately. 

Some PDE problem or the objective functions are, however, nonanalytic. This is the 
case, for example, when the equations or the objective function contain real(), 
imag(), or abs(). One solution in such cases is to enable Split complex variables in real 

and imaginary parts in the Compile Equations node corresponding to the study step for 
which sensitivity is computed. This converts the discretized PDE system from a 
complex-valued system to a real-valued system of double size, with separate degrees of 
freedom for the real and imaginary part. For this split system, also the nonanalytic 
functions are differentiable almost everywhere such that sensitivities can be computed.

One special form of nonanalytic objective functions can be treated more efficiently 
than splitting the variables: many common quantities of interest are harmonic time 
averages, which can be written in the form Q = real(a·conj(b)), where a and b are 
complex-valued linear functions of the solution variables and therefore implicit 
functions of the control variables. The problem with this expression is that, while Q is 
indeed a real-valued differentiable function of the control variables, it is not an 
analytical function of a and b. This complicates matters slightly because the sensitivity 
solver relies on symbolic partial differentiation and the chain rule.

While the partial derivatives of Q with respect to a and b are, strictly speaking, 
undefined, it can be proven that if they are chosen such that

 (2-10)

for any small complex increments δa and δb, the final sensitivities are evaluated 
correctly. The special function realdot(a,b) is identical to real(a*conj(b)) when 
evaluated but implements partial derivatives according to Equation 2-10. For that 
reason, use it in the definition of any time-average quantity set as objective function in 
a sensitivity analysis.

Issues to Consider Regarding Constraints

The theory behind sensitivity analysis as presented above (under Theory for Stationary 
Sensitivity Analysis) assumes that constraints on the multiphysics problem are handled 
in the same way as with any other equations. This is indeed the case for weak 
constraints, which are implemented as a part of the main system of equations. 
Standard pointwise constraints are instead eliminated from the discretized equations at 
an early stage in the solution process. This elimination is not visible to the sensitivity 

Q a aδ+ b bδ+,( ) Q a b,( )
a∂

∂Q aδ
b∂

∂Q bδ+ 
 real+≈
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solver, which therefore may miss some symbolic derivative terms necessary for 
computing a correct sensitivity.

In particular, if the mixed second derivative of a standard constraint with respect to 
both PDE solution and control variables is nonzero, sensitivity will not be correctly 
computed. For example, for a solution variable u and a control variable p, a constraint:

• u = p will give correct sensitivity.

• u2 = p2 will give correct sensitivity.

• u2 = up will give incorrect sensitivity.

If your multiphysics model contains constraints of the problematic type, you can still 
compute a correct sensitivity, provided that you enable weak constraints in the 
Constraint Settings section of the corresponding boundary condition node.

For technical details about the solver implementation, see The Sensitivity 
Analysis Algorithm in the COMSOL Multiphysics Reference Manual.

For more about the standard versus the weak constraints, see Boundary 
Conditions in the COMSOL Multiphysics Reference Manual.
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T h e o r y  f o r  T opo l o g y  Op t im i z a t i o n

About the Density Model

Topology optimization with the density method is one of the oldest and most simple 
techniques. A domain control variable is discretized on nodes or elements, and a 
fictitious material is introduced to account for the material boundary in an implicit way. 
An interpolation is then constructed such that the physical governing equation is 
solved wherever the control variable is equal to one, while an equation associated with 
the fictitious material is solved where the control variable is equal to zero. The 
interpolation is specific to the physics, and it is constructed such that intermediate 
value of the control variable are suboptimal; see Ref. 1. Furthermore, the problem 
might be ill posed in the absence of a constraint on the design freedom. This constraint 
is often imposed implicitly by means of a filter that introduces a minimum length scale 
via its filter radius.

The Helmholtz Filter

One can impose a minimum length scale, Rmin, on a domain control variable, θc, using 
a Helmholtz filter (see Ref. 2):

Here θf is the filtered material volume factor. The mesh element size is taken as the 
default filter radius, but the filter radius should not be smaller than mesh element size 
and you have to pick a fixed value to get mesh-independent designs. The filtered 
variable is continuous and discretized with linear polynomials. The filter can be turned 

θf Rmin
2 θf∇2 θc+=
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off, in which case θf = θc holds. Figure 2-1 illustrates the filtering process, and it is 
taken from the Application Library model Topology Optimization of an MBB Beam.

Figure 2-1: A symmetric topology optimization problem is shown with the control variable 
to the left and the filtered variable to the right.

Tanh Projection

The filtered design variable can have large areas with intermediate values. This tends 
to make the optimization problem easier to solve, but the design might rely on areas 
with unphysical properties due to intermediate values. These areas can then be reduced 
using a projection operation based on the hyperbolic tangent function (see Ref. 3):

Here, θ is the output material volume factor while θβ and β are the projection point 
and slope, respectively. θ is plotted in Figure 2-2 for θβ = 0.5 and β = 8. Projection can 
slow down the optimization progress, so it is turned off by default so that θ = θf.

Volume constraints are common in topology optimization. They are simple to 
implement using the average material volume factor, θavg,

θ
β θf θβ–( )( )tanh βθβ( )tanh+( )
β 1 θβ–( )( )tanh βθβ( )tanh+( )

-----------------------------------------------------------------------------------=

θavg θ Ωd
Ω
 Ωd

Ω
⁄=
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Figure 2-2: A symmetric topology optimization problem is shown with the filtered variable 
to the left and the projected variable to the right.

Penalization

Intermediate design variables do not have a clear physical interpretation, so the 
optimization problem has to be modified, if they appear in the optimal design. In the 
context of volume constraints/objectives, this is typically achieved using penalization. 
This means that while θ is used for the volume computation, the penalized material 
volume, θp, is used for the material interpolation.

The SIMP (Solid Isotropic Material with Penalization) and RAMP (Rational 
Approximation of Material Properties) are used for solid mechanics, while the Darcy 
interpolation is used within fluid mechanics.

Summary

The density topology adds the following variables listed in Table 2-1.

TABLE 2-1:  VARIABLES ASSOCIATED WITH THE DENSITY TOPOLOGY FEATURE.

DESCRIPTION NAME INPUT TO

Control material volume factor dtopo#.theta_c Filter

Filtered material volume factor dtopo#.theta_f Projection

Output material volume factor dtopo#.theta Penalization

SIMP θp θmin 1 θmin–( )θp +=

RAMP θp θmin
θ 1 θmin–( )
1 q 1 θ–( )+
------------------------------+=

Darcy  θp
q 1 θ–( )

q θ+
---------------------                 =
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Penalized material volume factor dtopo#.theta_p Material properties

Average material volume factor dtopo#.theta_avg Volume constraint

TABLE 2-1:  VARIABLES ASSOCIATED WITH THE DENSITY TOPOLOGY FEATURE.

DESCRIPTION NAME INPUT TO
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T h e  O p t i m i z a t i o n  I n t e r f a c e

The Optimization interface, found under the Mathematics>Optimization and 

Sensitivity branch ( ) when adding an interface, is designed to facilitate setting 
up and solving advanced optimization problems. Problems which do not require 
least-squares contributions to the objective function, control variable fields, or 
pointwise constraints are preferably set up directly using only the Optimization 
study step node.

The optimization interface contains tools which let you set objective function, 
constraints, and bounds and introduce new control variable fields as well as global 
control variables.

In this section:

• Adding an Optimization Interface

• The Optimization Interface

• Topology Optimization

• Shape Optimization
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Add i n g  an Op t im i z a t i o n  I n t e r f a c e

Add an Optimization interface when creating a new model or at any time during 
modeling. For a new model, physics interfaces are selected in the Model Wizard (after 
specifying the space dimension) or from the Add Physics window. In any active session, 
you can also right-click a Component node in the Model Builder to open the Add Physics 
window. 

To add an Optimization interface to a Component using the Add Physics window:

1 Under Mathematics>Optimization and Sensitivity, select Optimization ( ).

2 Click Add to Component. Optimization is added under the chosen Component in the 
Model Builder.

To add an Optimization interface to a Component using the Model Wizard, 
see Creating a New Model in the COMSOL Multiphysics Reference 
Manual.
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T h e  Op t im i z a t i o n  I n t e r f a c e

The Optimization (opt) interface ( ) contains tools for setting up advanced 
optimization problems. The main purpose of the interface is its ability to set up 
objective functions, constraint contributions and control variables which are defined 
locally only on certain geometric entities, as well as least-squares contribution with a 
time or parameter dependence. 

Define objective functions and constraints in terms of control and solution variables 
(the latter are given as the solution to the differential equations defined by the 
multiphysics model) and restrict these to specific geometric entities, or make them 
globally available. The Optimization interface itself does not have any selection, and is 
not associated with any particular space dimension. Instead you find the same set of 
feature nodes for domains, boundaries, edges and points. 

S E T T I N G S

The Label is the default physics interface name. 

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is opt.

• Optimization Theory

• Common Physics Interface and Feature Settings and Nodes in the 
COMSOL Multiphysics Reference Manual
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O P T I M I Z A T I O N  T O O L B A R

The following nodes are available from the Optimization ribbon toolbar (Windows 
users), Optimization context menu (Mac or Linux users), or right-click to access the 
context menu (all users).

The following feature nodes are available for some dimensions. Some nodes are 
selected directly on the toolbar and others from submenus:

• Least-Squares Objective

• Integral Objective (Point Sum Objective)

• Probe Objective

• Integral Inequality Constraint (Point Sum Inequality Constraint)

• Pointwise Inequality Constraint

• Control Variable Field (which includes the settings for the associated bound 
constraints)

• Global Objective

• Global Least-Squares Objective

• Global Inequality Constraint

• Global Control Variables

• Density Model

• Prescribed Density

• Free Shape Domain

• Polynomial Boundary

• Free Shape Boundary

• Free Shape Shell

• Symmetry/Roller

• Fixed Point

• Fixed Edge

For step-by-step instructions and general documentation 
descriptions, this is the Optimization toolbar. Subnodes are available 
by clicking the parent node and selecting it from the Attributes menu.



T H E  O P T I M I Z A T I O N  I N T E R F A C E  |  43

The following subnodes are available by right-clicking the Least Squares Objective 
node:

• Value Column

• Time Column

• Parameter Column

• Coordinate Column

• Ignored Column

Least-Squares Objective

Uses a Least-Squares Objective feature to create an objective function representing the 
sum of squared differences between measurements stored in an experimental data file 
and a corresponding expression evaluated in the COMSOL Multiphysics model. The 
model expression is evaluated using interpolation on the feature’s selection, at 
measurement locations specified in the data file. 

To create a least-squares objective, first import an Experimental Data file containing 
comma-separated or semicolon-separated columns of measurement data from a single 
experiment. Each Least-Squares Objective feature corresponds to an experiment where 
the measurements have been obtained using given values for a set of Experimental 

Parameters (for example, the temperature during the experiment). The squared sum of 

The number of coordinate columns in the data file must be the same as 
the dimension of the geometry, even when the selection of the 
Least-Squares Objective feature is on a lower dimension. In that case, 
model expressions are evaluated at the nearest points on the given 
selection.

• Use a domain-level Least-Squares Objective node unless the model 
expressions corresponding to the measured data exists only on 
boundaries, edges, or points. 

• There is no need to add points to the geometry at the measurement 
locations specified in the file.

• If your experimental data does not contain one or more columns with 
measurement locations, use a Global Least-Squares Objective feature 
instead.
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the difference between the measurement values and the corresponding expressions 
evaluated in the model — when solved for the given parameter values — is added as a 
contribution to the total least-squares objective function. 

Right-click the node to add column subnodes — Value Column, Time Column, 
Parameter Column, Coordinate Column, and Ignored Column — assigning meaning 
to the individual columns as values, times, parameter values, coordinate data, or values 
to ignore, respectively. One column subnode must be added for each column in the 
data file and in the same order as the columns appear in the file.

E X P E R I M E N T A L  D A T A

Enter a Filename or click the Browse button to specify a measurement data file 
containing comma-separated or semicolon-separated columns of measurements. The 
files are typically CSV files (*.csv), data files (*.dat), or plain text files (*.txt).

E X P E R I M E N T A L  P A R A M E T E R S

Click the Add button ( ) below the table to add an experimental parameter. 
Experimental parameters are useful for including additional parameters that represent 
model conditions for the experimental data and that are valid for the current 
experimental data file. In the Name column, choose a parameter name from the global 
parameters defined in the model. Enter a global-scope expression or value in the 
Expression column to assign a value to the parameter in this experiment. Use the Load 

from File ( ) and Save to File ( ) buttons to load and save experimental parameter 
names and expressions from and to a file. Use the Delete button ( ) to remove the 
selected parameter from the table.

Move column nodes up and down using the context menu or a keyboard 
combination of the Ctrl key and an arrow key.

If you have LiveLink™ for Excel®, you can also click the Load from Excel 

File ( ) and Save to Excel File ( ) buttons. 

See the LiveLink™ for Excel® User’s Guide for more information. Or go 
to http://www.comsol.com/livelink-for-excel/ to learn more about the 
product.
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Value Column

To add a Value Column subnode, right-click the Least-Squares Objective node. Use a 
Value Column to identify a column in the experimental data file as containing 
measurement values. Enter a corresponding Expression, which must be available for 
evaluation on the geometric entities selected in the node. Enter a corresponding 
Column contribution weight, which must be strictly positive and be available for 
evaluation in the global scope in the current model.

Optionally, a Variable name can be specified to enable access to the data from the file 
for postprocessing. Note that the variable will be defined in only the data points 
(parameter value, time, and coordinates) from the file. In postprocessing, it is 
necessary to evaluate in the data points to ensure an adequate visualization. One 
option is to use a Point Evaluation or Point Graph feature with a Cut Point 1D (2D/3D) 
dataset. The Cut Point dataset is available as a subnode under the Datasets node. In 
the Point Data section in the Settings window for the Cut Point 1D (2D/3D) dataset, 
you can use the From file option from the Entry method list. Other options for 
postprocessing the experimental data are interpolation functions and tables (use a new 
Table node with data imported from the least-squares objective file in that case). A Unit 
can also be specified if desired, using the syntax for a valid unit definition in the 
COMSOL Multiphysics software. The difference between the Expression and the value 
from the file is squared and multiplied with the Column contribution weight and a factor 
0.5 to give the contribution to the total objective for each measured value.

Time Column

To add a Time Column subnode, right-click the Least-Squares Objective node. Use a Time 

Column to identify a column in the experimental data file as containing the times at 
which measurements in the value columns were made. When computing the total 
least-squares objective value, the value column expressions are evaluated at these times 
in a forward transient solution.

Parameter Column

To add a Parameter Column subnode, right-click the Least-Squares Objective node. Use 
a Parameter Column to identify a column in the experimental data file as containing the 
parameter values for which measurements in the value columns were made. When 
computing the total least-squares objective value, the value column expressions are 
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evaluated for these parameter values. The Parameter name has to correspond to one of 
the global parameters defined in the model.

Coordinate Column

To add a Coordinate Column subnode, right-click the Least-Squares Objective node. Use 
a Coordinate Column to identify a column in the experimental data file as containing the 
global coordinates at which measurements in the value columns were made. Select 
applicable Coordinate and Frame from the drop-down menus. The number of 
coordinates must correspond to the number of dimensions in the model.

Ignored Column

To add an Ignored Column subnode, right-click the Least-Squares Objective node. Use 
an Ignored Column to identify a column in the experimental data file that should not be 
used.

Integral Objective (Point Sum Objective)

An Integral Objective (or Point Sum Objective on points) is defined as the integral of a 
closed-form expression of control and solution variables (the latter are given as the 
solution to the differential equations defined by the multiphysics model) that are either 
global or available in the domain in question. Hence, its definition is restricted to a 
specific set of geometric entities of the same dimension. For integral objectives on 
points, the integration reduces to a summation.

O B J E C T I V E

Enter an Objective expression that is integrated over the geometric entity level in the 
integral objective.

Q U A D R A T U R E  S E T T I N G S

Specify the settings for the Quadrature used to numerically evaluate the integral in the 
integral objective: the integration order (default: 4) in the Integration order field and 
the frame to integrate on (default: the spatial frame), which is selected from the 
Integrate on frame list.



T H E  O P T I M I Z A T I O N  I N T E R F A C E  |  47

Probe Objective

A Probe Objective is defined as a point evaluation of a closed-form expression of control 
and solution variables (the latter are given as the solution to the differential equations 
defined by the multiphysics model) that are either global or available in the domain in 
question. The point used for the point evaluation has to be contained in the domain.

O B J E C T I V E

Enter an Objective expression that is evaluated at the point in the domain.

P R O B E  C O O R D I N A T E S

Specify the Probe coordinates for the point in the domain where the expression for the 
objective is evaluated. After specifying the probe coordinates, select an option from the 
Evaluate in frame: Spatial (the default), Material, or Mesh.

Integral Inequality Constraint (Point Sum Inequality Constraint)

Integral Inequality Constraints (Point Sum Inequality Constraints on points) specify 
bounds on the value of the integral of an expression Pint(ξ,u) taken over a selected set 
of geometric entities of the same dimension, Ω:

The expression is a closed-form expression of control and solution variables (the 
solution variables are given as the solution to the differential equations defined by the 
multiphysics model). 

For integral inequality constraints on points, the integration reduces to a summation 
over the selected points:

C O N S T R A I N T

Enter a Constraint expression that is integrated over the domain in the integral 
inequality constraint.

lbint Pint ξ u,( )
Ω
 ubint≤ ≤

lbint Pint ξ u,( ) ubint≤ ≤



48 |  C H A P T E R  3 :  T H E  O P T I M I Z A T I O N  I N T E R F A C E

Q U A D R A T U R E  S E T T I N G S

Specify the settings for the Quadrature used to numerically evaluate the integral in the 
integral objective: the integration order (default: 4) in the Integration order field and 
the frame to integrate on (default: the spatial frame), which is selected from the 
Integrate on frame list.

B O U N D S

By default, the Lower bound and Upper bound check boxes are selected to activate the 
required bounds. To specify equality constraints, simply make sure the upper and lower 
bounds have the same value.

Pointwise Inequality Constraint

A Pointwise Inequality Constraint is given as a restriction to the values of a closed-form 
expression at all points in a set of geometric entities of the same dimension. Due to 
computational issues, the expression has to be a closed-form expression of only control 
variables. Furthermore, only those control variables that are either global or available 
in the domain in question are usable.

C O N S T R A I N T

Enter a Constraint expression for the pointwise inequality constraint.

D I S C R E T I Z A T I O N

This section contains settings for the element used to discretize the control variable. 
Select a Shape function type — Lagrange (the default) or Discontinuous Lagrange. Also 
select an Element order — Linear, Quadratic (the default), Cubic, Quartic, Quintic, Sextic, 
or Septic. 

The Constraint method setting controls where the constraints are evaluated:

• Choose Elemental to make the software assemble the constraint on each node in 
each element; that is, there are usually several constraints at the same global 
coordinates because elements in the computational mesh overlap at nodes.

• Choose Nodal (the default) to make the software assemble a single constraint for 
each global node point. The nodal constraint method provides an averaging of the 
constraints from adjacent elements.
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The default is Nodal in order to minimize the number of constraints that must be 
handled by the optimization solvers. 

B O U N D S

By default, the Lower bound and Upper bound check boxes are selected to activate the 
required bounds. To specify equality constraints, make sure that the upper and lower 
bounds have the same value.

Control Variable Field

Add a Control Variable Field node to define a control variable which varies as function 
of position within selected geometric entities (domains, boundaries, edges, or points). 
The control variable field is discretized using shape functions in the same way as other 
dependent variables in a multiphysics model. The discrete control variable degrees of 
freedom, on which the optimization solvers operate represent values at element nodes. 
Right-click the node to add a Control Variable Bounds subnode.

C O N T R O L  V A R I A B L E

Enter a Control variable name and Initial value.

C O N T R O L  V A R I A B L E  S C A L I N G

Enter a Scale indicating a typical magnitude of the control variable. The relative solver 
tolerances refer to variables rescaled with respect to this scale, and it may also influences 
the search pattern of some optimization solvers.

D I S C R E T I Z A T I O N

This section contains settings for the shape functions used to discretize control 
variables. Select a Shape function type: Lagrange (the default) or Discontinuous Lagrange. 
Also select an Element order: Linear, Quadratic (the default), Cubic, Quartic, Quintic, 
Sextic, or Septic. 

The default choice of Value type when using splitting of complex variables is Real. This 
means that if the solver is set up to split complex variables in real and imaginary parts, 
no imaginary part is allocated for the control variable field, which is therefore 
guaranteed to be real. Choose Complex to allocate both real and imaginary parts.

The Constraint method setting has no effect for Discontinuous Lagrange 
shape functions whose nodes all lie strictly inside the mesh elements.
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Control Variable Bounds

The Control Variable Bounds node specifies simple bounds for its parent Control Variable 

Field node. You can only add one single Control Variable Bounds node for each Control 

Variable Field.

B O U N D S

By default, both lower and upper bounds are active and set to 0, which constraints the 
control variable field to be identically zero everywhere. Enter new Lower bound and 
Upper bound values to specify an allowed range for the control variable, or deactivate 
one of the bounds to specify a one-sided bound.

Global Objective

Specify the Global Objective contribution to the function. To add this feature, either 
right-click the Optimization interface node and select it from the context menu, or on 
the Physics toolbar, click Global Objective ( ). In some cases, select it from the Global 
submenu.

O B J E C T I V E

Enter an Objective expression that defines the contribution to the objective function. It 
can be an expression of those components of the control and solution variables (the 
solution variables are given as the solution to the differential equations defined by the 
multiphysics model) that are globally available.

Global Least-Squares Objective

The Global Least-Squares Objective is similar to the Least-Squares Objective (see 
Least-Squares Objective) but compares measured data to a globally available model 
expression. Therefore it does not require any selection, and does not allow any 
Coordinate Column subnodes. 

Bound expressions must be parameter expressions, meaning that they 
must only contain numbers, model parameters and physical constants. 
Such expressions can be evaluated to a number independently of the 
geometry and the multiphysics model solution.
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In addition, the Experimental Data section contains a Data source choice:

• Select File (the default) to take the experimental data directly from a file. Click 
Browse to locate and select the file. Add column nodes below the Least-Squares 

Objective to specify the contents of each column in the file. See Least-Squares 
Objective, Value Column, Time Column, Parameter Column, and Ignored Column 
for details.

• Select Result table to use experimental data from a Table node under Results. The 
data may have been generated by another feature under Results, or imported into 
the table feature. In either case, the experimental data will be stored in the 
COMSOL model file. 

• Select Local table to enter experimental data directly into a local table in this Settings 
window. Click the Add button ( ) below the table to add another column. Rows 
are added automatically as you fill in the first column. To remove a column of data, 
select some cell in that column and click the Delete Column button ( ). Similarly, 
click the Delete button ( ) to delete the current row. You can also save the 
definitions of the experimental data to a text file by clicking the Save to file button 
( ). To load a text file with experimental data, use the Load from file button ( ). 
The file dialog box allows a number of different file types, both for import and 
export.

When using experimental data in a Local table or from a Results table, you must choose 
from the Parameter type list whether each data row in the table corresponds to a Time 
or a Parameter value, and in which Time column or Parameter column the corresponding 
value is stored. Also specify the Time unit, or the Parameter name and Parameter unit, 
as appropriate. Finally, fill in the Model expression corresponding to the experimental 
values in each Data column, as well as the column Unit and Weight.

When the data source is Results table or Local table, you can also select which items in 
the Data column by clearing or selecting the corresponding check box in the Use 
column. You can then, for example, use the same results table to contain both 
experimental input and output data when performing a time-dependent optimization 
using a time-dependent load.
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To add this feature, either right-click the Optimization interface node and select it from 
the context menu, or on the Physics toolbar, click Global Least-Squares Objective ( ). 
In some cases, select it from the Global submenu.

Global Inequality Constraint

Specify a Global Inequality Constraint that may involve both control variables and 
solution variables, as long as the expression is available for evaluation on the global 
level. To add this feature, either right-click the Optimization interface node and select 
it from the context menu, or on the Physics toolbar, click Global Inequality Constraint 
( ). In some cases, select it from the Global submenu.

C O N S T R A I N T

Enter a globally defined Constraint expression whose value is to be constrained.

B O U N D S

By default, the Lower bound and Upper bound check boxes are selected to activate the 
required bounds. To specify equality constraints, simply make sure the upper and lower 
bounds have the same value.

Global Control Variables

Specify those components of the Global Control Variables that are globally available. To 
add this feature, either right-click the Optimization interface node and select it from the 
context menu, or on the Physics toolbar, click Global Control Variables ( ). In some 
cases, select it from the Global submenu.

C O N T R O L  V A R I A B L E S

In the table, enter Variable names, Initial values, and Lower and Upper Bounds of global 
control variables. To specify equality constraints, simply make sure the upper and lower 
bounds have the same value.

Move control variable rows up and down using the Move up ( ) and Move 

down ( ) buttons. To remove a control variable, select some part of that variable’s 

See Mooney-Rivlin Curve Fit for an example of fitting unknown 
function parameters to measured data using a global least-squares 
objective: Application Library path Optimization_Module/

Parameter_Estimation/curve_fit_mooney_rivlin.
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row in the table and click the Delete button ( ). You can also save the definitions of 
the global control variables to a text file by clicking the Save to file button ( ) and 
using the Save to File dialog box that appears. To load a text file with global control 
variables, use the Load from file button ( ) and using the Load from File dialog box 
that appears. Data must be separated by spaces or tabs.

D I S C R E T I Z A T I O N

To show the Discretization section, select Advanced Physics Options in the Show More 

Options dialog box on the Model Builder window’ toolbar. The default choice of Value 

type when using splitting of complex variables is Real. This means that if the solver is set 
up to split complex variables in real and imaginary parts, no imaginary part is allocated 
for the control variable field, which is therefore guaranteed to be real. Choose Complex 
to allocate both real and imaginary parts.

C O N T R O L  V A R I A B L E  S C A L I N G

Enter a Scale indicating a typical magnitude of the control variables. The relative solver 
tolerances refer to variables rescaled with respect to this scale, and it may also influences 
the search pattern of some optimization solvers.

If you have LiveLink™ for Excel®, you can also click the Load from Excel 

File ( ) and Save to Excel File ( ) buttons. 

See the LiveLink™ for Excel® User’s Guide for more information. Or go 
to http://www.comsol.com/livelink-for-excel/ to learn more about the 
product. 
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T opo l o g y  Op t im i z a t i o n

Introduction

Topology optimization problems can be solved by relaxing the discrete optimization 
problem to a continuous optimization problem using the density method; see the 
Density Model feature below. This feature adds a material volume factor as a control 
variable in a custom selection. A minimum length scale can be imposed together with 
common options for projection and interpolation. It is up to you as the user to use the 
penalized material volume factor to interpolate material properties; see the Topology 
Optimization of an MBB Beam or Minimizing the Flow Velocity in a Microchannel 
models for examples of topology optimization in structural and fluid mechanics, 
respectively.

The Density Model feature can be modified using the Prescribed Density feature.

Density Model

The Density Model feature ( ) can be added from the model tree under 
Component>Definitions using the Topology Optimization context menu. It includes 
settings for

• Filtering

• Projection

• Interpolation

• Discretization

V A R I A B L E S

The Density Model feature adds

• A domain control variable field (dtopo#.theta_c) (control material volume 
factor)

• A domain dependent variable (dtopo#.theta_f) (filtered material volume factor)

• A domain variable (dtopo#.theta) (projected material volume factor)

• A domain variable (dtopo#.theta_p) (penalized material volume factor)

• Aglobal variable (dtopo#.theta_avg) (average material volume factor)
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The control variable field is bounded to the interval [0;1]. It is used as input to a 
Helmholtz filter, which introduces a minimum length scale. The projected material 
volume factor is fixed to 1 outside the selection for the Density Model feature.

F I L T E R I N G

From the Filter type list, choose between no filtering (None) and a Helmholtz filter 
(Helmholtz; the default), which can impose a minimum length scale by means of a filter 
radius Rmin (SI unit: m). The local mesh element size h is the default value because 
this radius should not be smaller than the mesh element size. However, a fixed length 
scale must be used to get mesh-independent results.

P R O J E C T I O N

From the Projection type list, specify no projection (None; the default) or projection 
based on the hyperbolic tangent function (Hyperbolic tangent projection). When using 
projection, you can choose the projection point and the projection slope. Projection 
with a large slope produces designs almost free of intermediate values, but the 
optimization problem will be difficult to solve if the slope is too large.

I N T E R P O L A T I O N

The feature supports, using the Interpolation type list, RAMP and SIMP interpolation for 
solid mechanics, while Darcy interpolation can be used for fluid mechanics. You can 
also choose a Linear or a User defined interpolation. For solid mechanics it is common 
to interpolate the Young’s modulus, and the relative void stiffness can be bounded 
using the minimum penalized volume fraction, θmin. The SIMP exponent pSIMP and 
the RAMP parameter qRAMP properties determine the stiffness for intermediate design 
variables. Values in the interval [2;4] produce well-defined topologies in the context 
of volume-constrained compliance minimization. For fluid mechanics it is common to 
introduce a volume damping force, which should be large in the solid regions. The 
maximum value, however, depends on the fluid viscosity as well as the mesh size, so it 
is up to you as the user to specify this value. The Darcy penalization parameter controls 
the damping for intermediate design variables, and a value of 1 works well in the 

For a more extensive introduction to the mathematics implemented by 
this feature, see Theory for Topology Optimization.
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context of volume constrained dissipation maximization, but sometimes a 
continuation starting from a lower value is required to find the global minimum.

D I S C R E T I Z A T I O N

The Linear discretization gives a continuous representation by associating the design 
variables with the mesh nodes, while an elementwise Constant discretization gives a 
discontinuous representation, which generally gives rise to more variables than the 

Linear discretization.

The Initial value θ0 should be set such that the starting design does not violate any 
optimization constraints.

Prescribed Density

The Prescribed Density feature ( ) can be added from the model tree under 
Component>Definitions using the Topology Optimization context menu. It includes the 
following settings:

F I X E D

In the Fixed value field, enter a value for θfix (default: 1). Any Density Model will have 
the selection of its filtered, projected, and penalized variables extended (or 
overwritten) by the Fixed Topology Domain selection. If the Density Model uses 
Helmholtz filtering, the filter will be extended and use θfix as input to the filter.

Note that you can use the dtopo#.theta_avg variable to impose a 
volume constraint and the dtopo#.theta variable to write a custom 
material interpolation.
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S h ap e  Op t im i z a t i o n

Introduction

Shape optimization can be used to deform an existing geometry to improve its 
performance. The technique works by deforming the mesh, so the mesh quality will 
often decrease, and this effect is normally what limits the magnitude of the shape 
deformation. Ultimately, the elements can become inverted, and if this happens, the 
error message in Figure 3-1 is typically displayed.

The Polynomial Boundary, Free Shape Boundary, and Free Shape Shell features set up 
control variables for all dimensions, so a point on a boundary associated with one of 
these features can move within a box with side lengths equal to double the Maximum 

displacement dmax. The features are thus free to move the boundaries in the tangential 
directions.

The features can be combined arbitrarily. The displacement on shared entities will be 
controlled by the feature with the smaller Maximum displacement dmax.

Free Shape Domain

The Free Shape Domain feature ( ) can be added from the model tree under 
Component>Definitions using the Shape Optimization context menu. It sets up a 
smoothing equation for the domains in its selection, but it does not add any control 
variables, so unless a Polynomial Boundary or a Free Shape Boundary are added, the 
shape of the geometry will not change.

Boundaries will be considered fixed, if they are not part of a Polynomial Boundary, 
Free Shape Boundary, or Symmetry/Roller boundary. The interior boundaries of the 
Free Shape Domain feature are never fixed.

The Free Shape Domain feature includes the following settings:

S M O O T H I N G

For the mesh smoothing, choose smoothing type from the Mesh smoothing type list: 
Laplace (the default), Winslow, Hyperelastic, or Yeoh. For Yeoh, also enter a Stiffening 

factor C2 (default: 10). See Smoothing Methods in the COMSOL Multiphysics 
Reference Manual for more information.
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I N I T I A L  D E F O R M A T I O N

Enter the initial deformation in the dx fields (default: 0 for all components).

Polynomial Boundary

The Polynomial Boundary feature ( ) can be added from the model tree under 
Component>Definitions using the Shape Optimization context menu. It is only available 
for 2D components and the selection has to be adjacent to a Free Shape Domain. It 
includes the following settings:

C O N T R O L  V A R I A B L E  S E T T I N G S

Enter a value in for the Maximum displacement dmax (default: default: 5 % of the 
geometry bounding box).

P O L Y N O M I A L

Choose the type of polynomial from the Type list: Bernstein (the default) or Lagrange. 
Then enter an Order n for the polynomial (default: 2).

Bernstein polynomials satisfy the maximum displacement bound everywhere, while 
Lagrange polynomials only satisfy it in the interpolation points and therefore Bernstein 

polynomials can be more robust.

Free Shape Boundary

The Free Shape Boundary feature ( ) can be added from the model tree under 
Component>Definitions using the Shape Optimization context menu. The selection of 
the feature has to be adjacent to a Free Shape Domain. The Free Shape Boundary feature 
includes the following settings:

C O N T R O L  V A R I A B L E  S E T T I N G S

Enter a value for the Maximum displacement dmax (default: 5 % of the geometry 
bounding box). A large value can give rise to error messages such as that in Figure 3-1.

A large value can give rise to error messages such as that in Figure 3-1.

Large orders can give rise to error messages such as that in Figure 3-1.
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F I L T E R I N G

Enter a filter radius Rmin for the filtering in the Filter radius field (default: 10 % of the 
geometry bounding box). A small value can give rise to error messages such as that in 
Figure 3-1.

Figure 3-1: This error message is a sign that the dmax parameter is too large or the Rmin 
variable is too small.

Free Shape Shell

The Free Shape Shell feature ( ) can be added from the model tree under 
Component>Definitions using the Shape Optimization context menu. The selection of 
the feature cannot be adjacent to a Free Shape Domain. It is recommended not to use 
this feature on boundaries adjacent to meshed domains. The Free Shape Shell feature 
includes the following settings:

C O N T R O L  V A R I A B L E  S E T T I N G S

Enter a value in the Maximum displacement field (default: 5 % of the geometry 
bounding box).

F I L T E R I N G

Enter a radius Rmin for the filtering in the Filter radius field (default: 10 % of the 
geometry bounding box).

Symmetry/Roller

The Symmetry/Roller feature ( ) can be added from the model tree under 
Component>Definitions using the Shape Optimization context menu. It includes no 
specific settings so you only need to specify the selection of boundaries where it should 
be valid in the Boundary Selection section. Only straight edges (in 2D) and flat faces (in 
3D) can be selected.
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Edges and points shared between the feature and Free Shape Boundary or Polynomial 

Boundary features will be free to move tangentially to the boundaries that are part of 
the Symmetry/Roller selection.

Fixed Point

The Fixed Point feature ( ) can be added from the model tree under 
Component>Definitions using the Shape Optimization context menu. It is only available 
in 2D and includes no specific settings so you only need to specify the selection of 
points where it should be valid in the Point Selection section.

The feature fixes points in place, but keep in mind that boundaries are automatically 
fixed, if they are not associated with a Polynomial Boundary, Free Shape Boundary, Free 
Shape Shell, or Symmetry/Roller feature.

Fixed Edge

The Fixed Edge feature ( ) can be added from the model tree under 
Component>Definitions using the Shape Optimization context menu. It is only available 
in 3D and includes no specific settings so you only need to specify the selection of 
points where it should be valid in the Edge Selection section.

The feature fixes edges in place, but keep in mind that boundaries are automatically 
fixed, if they are not associated with a Polynomial Boundary, Free Shape Boundary, Free 
Shape Shell, or Symmetry/Roller feature.
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T h e  S e n s i t i v i t y  I n t e r f a c e

The Sensitivity interface, found under the Mathematics>Optimization and 

Sensitivity branch ( ) when adding an interface, is designed to facilitate setting 
up and solving sensitivity problems.

To find the sensitivity of a model, add the sensitivity interface along with the physics 
interfaces in the model. The optimization interface lets you set objective function 
and to introduce the sensitivity parameters.

In this section:

• The Sensitivity Interface
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T h e  S e n s i t i v i t y  I n t e r f a c e

The Sensitivity (sens) interface ( ), found under the Mathematics>Optimization and 

Sensitivity ( ) branch when adding a physics interface, provides tools for adding 
advanced sensitivity evaluation to a stationary or time-dependent model. Basic 
problems defined only in terms of global scalar objective functions and model 
parameters can be set up directly in a Sensitivity study step and therefore do not require 
the use of a Sensitivity interface.

The objective functions are defined in terms of control and solution variables (the 
latter are given as the solution to the differential equations defined by the multiphysics 
model), which can be fields dependent on position in space or scalar quantities defined 
globally. This flexibility is reflected in the physics interface by grouping these settings 
according to the dimension of the domain to which they apply. In such a group of 
settings, the following settings can be specified, to which each corresponds a separate 
feature and its Settings window:

• Integral Objective

• Probe Objective

• Control Variable Field

S E N S I T I V I T Y  T O O L B A R

The following nodes are available from the Sensitivity ribbon toolbar (Windows users), 
Sensitivity context menu (Mac or Linux users), or by right-clicking to access the 
context menu (all users).

For a more extensive introduction to the mathematics implemented by 
this physics interface, see the Theory for the Sensitivity Interface.

Note that adding a Sensitivity study step to a study makes it possible to 
perform a sensitivity analysis directly at the study level. See Sensitivity in 
the COMSOL Multiphysics Reference Manual.

For step-by-step instructions and general documentation 
descriptions, this is the Sensitivity toolbar. 



T H E  S E N S I T I V I T Y  I N T E R F A C E  |  63

The main Settings window for the Sensitivity node contains the following section:

S E T T I N G S

The Label is the default physics interface name. 

The Name is used primarily as a scope prefix for variables defined by the physics 
interface. Refer to such physics interface variables in expressions using the pattern 
<name>.<variable_name>. In order to distinguish between variables belonging to 
different physics interfaces, the name string must be unique. Only letters, numbers, and 
underscores (_) are permitted in the Name field. The first character must be a letter.

The default Name (for the first physics interface in the model) is sens.

Integral Objective

An Integral Objective is defined as the integral of a closed form expression of control 
and solution variables (the latter are given as the solution to the differential equations 
defined by the multiphysics model) that are either global or available in the domain in 

TABLE 4-1:  THE SENSITIVITY TOOLBAR

BUTTON OR MENU NAME

Physics 

Add Physics

Global

Global Objective

Global Control Variables

• Common Physics Interface and Feature Settings and Nodes in the 
COMSOL Multiphysics Reference Manual

• Global Objective

• Global Control Variables

Sensitivity Analysis of a Communication Mast Detail: Application Library 
path COMSOL_Multiphysics/Structural_Mechanics/

mast_diagonal_mounting_sensitivity
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question. Hence, its definition is restricted to a set of geometric entities of the same 
dimension. For integral objectives on points, the integration reduces to a summation.

O B J E C T I V E

Enter an Objective expression that is integrated over the geometric entity level in the 
integral objective.

Q U A D R A T U R E  S E T T I N G S

Specify the settings for the Quadrature used to numerically evaluate the integral in the 
integral objective: the integration order (default: 4) in the Integration order field and 
the frame to integrate on (default: the spatial frame), which is selected from the 
Integrate on frame list.

Probe Objective

A Probe Objective is defined as a point evaluation of a closed form expression of control 
and solution variables (the latter are given as the solution to the differential equations 
defined by the multiphysics model) that are either global or available in the domain in 
question. The point used for the point evaluation has to be contained in the domain.

O B J E C T I V E

Enter an Objective expression that is evaluated at the point in the domain.

P R O B E  C O O R D I N A T E S

Specify the Probe coordinates for the point in the domain where the expression for the 
objective is evaluated. After specifying the probe coordinates, select an option from the 
Evaluate in frame — Spatial (the default), Material, or Mesh.

Control Variable Field

Specify the Control Variable Field specific to the geometric entity level (domain, edge, 
boundary, or point) in question.

C O N T R O L  V A R I A B L E

Enter a Control variable name and Initial value.

D I S C R E T I Z A T I O N

This section contains settings for the element used to discretize the control variable. 
Select a Shape function type: Lagrange (the default) or Discontinuous Lagrange. Also 
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select an Element order: Linear, Quadratic (the default), Cubic, Quartic, or Quintic. The 
value type (complex or real) for all the variables defined by this Global Equations node 
is selected in the Value type when using splitting of complex variables selection. The 
default value type is Complex.

Global Objective

Specify the Global Objective contribution to the function by entering an objective 
expression. To add this feature, either right-click the Sensitivity interface node and 
select it from the context menu, or on the Physics toolbar, click Global Objective ( ).

O B J E C T I V E

Enter an Objective expression that defines the contribution to the objective function. It 
can be an expression of those components of the control and solution variable (the 
solution variable is given as the solution to the differential equations defined by the 
multiphysics model) that are globally available.

Global Control Variables

Use the Global Control Variables node to specify any globally available control variables. 
To add this feature, either right-click the Sensitivity interface node and select it from 
the context menu, or on the Physics toolbar, click Global Control Variables ( ).

C O N T R O L  V A R I A B L E S

In the table, enter Variable names and Initial values of the control variables that are 
globally available. To add a control variable to the table, click the Add button ( ). To 
remove a control variable and its values from the table, click the Delete button ( ).

Common Physics Interface and Feature Settings and Nodes in the 
COMSOL Multiphysics Reference Manual
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T h e  O p t i m i z a t i o n  S o l v e r s

The Optimization study step is the hub of all optimization tasks. There you can 
specify which objective functions, control variables, and constraints that are 
included in the optimization problem, as well as select an optimization solver and 
set its most important parameters. The Parameter Estimation study step provides a 
simplified interface for standard parameter estimation tasks.

This chapter describes the Optimization study step and Parameter Estimation study 
step settings, as well as the theory and detailed settings applying to the individual 
solvers:

• The Optimization Study

• The Parameter Estimation Study

• About the Optimization Solvers

• The Optimization Solver

• Advanced Solver Properties
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T h e  Op t im i z a t i o n  S t u d y

The Optimization study ( ) node collects all settings necessary for solving 
optimization problems. It serves the dual purpose of defining the optimization 
problem to be solved and choosing an optimization solver, as well as controlling 
important solver properties and solver output.

The complete optimization problem can be set up directly in the Optimization study 
node when the objective function to be minimized or maximized is a global scalar 
expression and the only control variables to be varied are already defined as model 
parameters. If the model requires control variables or objective functions which 
depend on position in the geometry, general least-squares objective contributions or 
pointwise constraints, these must be set up separately using an Optimization interface. 
Such contributions are displayed in the Optimization study node settings where they 
can be individually disabled or enabled.

When you add an Optimization study node to a study, it is always inserted as the first 
node, at the top of the study sequence. Remaining nodes in the sequence define the 
multiphysics problem on which the optimization process will act. If this sequence 
contains Study Reference nodes and you are using a derivative-free solver, you can 
choose for each objective function contribution and constraint whether to compute its 
value for the main sequence or for the sequence pointed to by one of the study 
references. 

A derivative-free optimization solver can be combined with a parametric 
sweep, but in general it is only possible to use one Sensitivity, 
Optimization, Parameter Estimation, or Parametric Sweep study step in 
each study. These study nodes tend to control the same solver settings and 
are therefore incompatible with each other. To perform parametric or 
nested optimization, you can call a study containing an Optimization 
node from inside another study, via a Study Reference node.

This section describes the Optimization study node available with the 
Optimization Module. See also Studies and Solvers in the COMSOL 
Multiphysics Reference Manual for more information about solvers in 
general. In this guide, see About the Optimization Solvers for details on 
the capability and settings of the individual optimization solvers.
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The Settings window has the following sections:

O P T I M I Z A T I O N  S O L V E R

Select an optimization solver and specify its most important parameters.

Method
Choose an optimization solver method. The list of available solvers contains both 
gradient-based and derivative-free methods. 

• Derivative-free (gradient-free) optimization options: Coordinate search, Monte Carlo, 
Nelder-Mead (the default), BOBYQA, and COBYLA. 

• Gradient-based optimization options: SNOPT, MMA, and Levenberg-Marquardt.

The different solvers are more or less suitable for different types of optimization 
problems. There are also differences in which problem features they can handle. 
Objective contributions, control variables and constraints which are not compatible 
with the selected solver are marked by a warning sign ( ) in the first column of the 
corresponding table.

Optimality Tolerance
Specify the relative Optimality tolerance. The value is applied relative to each control 
variable after scaling with its corresponding specified scale. The default value of this 
setting varies depending on the selected optimization Method.

Expressions for user-defined objective and constraint functions are 
evaluated in the global namespace, while the expressions for 
physics-defined objective and constraint expressions are evaluated in the 
component namespace. If there are a global parameter or function and a 
component variable or function with the same name (for example, par or 
func: root.par and compi.par, root.func, and compi.func) and a 
user-defined objective function or constraint with expression f(par) or 
func, it is evaluated as f(root.par) and root.func, while a 
physics-defined objective or constraint with expression f(par) or func is 
evaluated as f(compi.par) or compi.func. Note that the evaluation of 
the expressions of the user-defined objective and constraint functions in 
the Optimization study differs from the evaluation in Results (where the 
expressions are evaluated in the component namespace).
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Random Seed
This setting is available for the Monte Carlo method. Select the Random seed check box 
to enter a random seed value as a nonnegative integer in the associated text field. 
Otherwise, a random seed is generated automatically.

Study Step
The gradient-based solvers can optimize only over the output from a single study step, 
and not for all study step types. Choose any of the available study steps from the Study 

step list. Click the Go to Source button ) to move to the Settings window for the 
selected study node.

Maximum Number of Model Evaluations
Specify the Maximum number of model evaluations. The default is 1000. This number 
limits the number of times the objective function is evaluated, which is related to the 
number of times the multiphysics system is simulated for different values of the 
optimization control parameter.

Distribute Parametric Sweep
If you are using a solver that supports batch evaluation of objective values, you can 
choose to distribute computations over the nodes in a cluster. To enable this 
functionality, first click the Show More Options button ( ) and select Batch and Cluster 

in the Show More Options dialog box, then select the Distribute parametric sweep check 
box.

Least-Squares Time/Parameter Method
If least-squares objectives are defined, you can specify the Least-squares time/parameter 

method. The default is Manual. In that case, all least-squares defined time or parameter 
values are merged with the time or parameter values defined in general parameter value 
lists. The other option is From least-squares objective. In that case, only least-squares 
defined time or parameter values are used and all other time or parameter values are 
disregarded.

O B J E C T I V E  F U N C T I O N

You specify the objective function for the optimization problem in the table’s 
Expression column. Enter any globally available expression that evaluates to a real 

The number of objective evaluations is not equal to the number of 
iterations taken by the optimizer because each iteration can invoke more 
than a single objective function evaluation.
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number. Optionally, you can add a description in the Description column. Click the Add 

Expression ( ) and Replace Expression ( ) buttons to search through a list of 
predefined expressions.

The Evaluate for column specifies the study step for which each objective contribution 
will be evaluated. Available options are the last study step in the sequence plus all Study 
Reference nodes. When a gradient-based solver is used, the column is not active: all 
contributions are then evaluated for the same study step.

If there is an Optimization or Sensitivity interface in the model, containing objective 
function nodes, these show up in a separate table under Objective Function. Use the 
Active column to deactivate individual contributions as needed. Contributions not 
supported by the currently selected solver are marked by a warning sign ( ) in the first 
column, which disappears if you manually deactivate the objective.

Type
Select whether to perform a Minimization or a Maximization of the objective function. 
The default is to minimize the objective function.

Multiple objectives
If you have defined more than one objective function, choose how to evaluate the 
overall objective: Choose from Sum of objectives (the default), Minimum of objectives, 
or Maximum of objectives. Note that not all options are available together with all 
solvers.

Solution
Here you select which solution or solutions to use for evaluating the objective function 
when several solutions are present, like for Time Dependent or Eigenvalue studies. The 
possible choices are Auto (the default), Use first, Use last, Sum of objectives, Minimum of 

objectives, and Maximum of objectives. Note that the last three options first evaluate 
multiple objectives according to the Multiple objectives setting for each solution 

For an optimization objective that is expressed in terms of the solution u 
of a PDE, Integration (described in COMSOL Multiphysics Reference 
Manual) is one example of how you can define a scalar objective as 
required by the optimization solver. The evaluation of the objective 
function is similar to Global Variable Probe (described in COMSOL 
Multiphysics Reference Manual), so any variable that can be represented 
by a global variable probe is suitable as an objective.
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individually, and then compute the sum, minimum or maximum of the individual 
results.

All options are available only with the derivative-free solvers. When using SNOPT or 
Levenberg-Marquardt, Auto is the only choice. MMA supports all options except when 
optimizing over a Time Dependent study step.

With Auto selected, the solver chooses the evaluation method based on the innermost 
study. For the studies of Eigenvalue, Eigenfrequency, or Linear Buckling type (all 
described in COMSOL Multiphysics Reference Manual), the first solution 
corresponding to the smallest eigenvalue is chosen. For studies with parametric 
solutions (for example, studies in the Frequency Domain), the contributions from all 
solutions are summed (equivalent to the Sum of objectives option). For all other study 
types, the optimization solver selects the last solution, like the solution at the final time 
for a Time Dependent problem.

Outer solution
When there is a parametric sweep below the optimizations study step, the objective is 
evaluated using the Outer solutions from the parametric sweep. The options are 
between the Minimum of objectives, Maximum of objectives or Sum of objectives (the 
default).

C O N T R O L  V A R I A B L E S  A N D  P A R A M E T E R S

The first table under Control Variables and Parameters is used to select model 
parameters for use as control variables. Click the Add ( ) button to add one of the 
parameters defined in the Settings window for Parameters under Global Definitions to 
the set of control variables.

From a list in the Parameter name column, select the parameter to redefine as a control 
variable. Specify an Initial value for the control variables you add. The initial value is 
used as initial guess in the optimization solver and the objective function is explored 
around this point.

The Scale column is important. Each control variable is rescaled with its specified scale. 
This means, in practice, that the solvers only get to see the control variables divided by 
their corresponding scale, and it is on these rescaled variables that all tolerances are 
applied — both user-defined and internal tolerances intended to ensure the stability of 
the optimization methods. The default value is 1, which makes the solver work with 
the original, unscaled, variables.

Use the Lower bound and Upper bound columns to add lower and upper bounds to the 
control variables. The Optimization solver only evaluates the objective function within 
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these bounds. If you do not want to set bounds on a variable, leave the cell in the table 
empty.

Move control parameter rows up and down using the Move up ( ) and Move 

down ( ) buttons. To remove a control parameter, select some part of that variable’s 
row in the table and click the Delete button ( ). You can also save the definitions of 
the control parameters to a text file by clicking the Save to file button ( ) and using 
the Save to File dialog box that appears. To load a text file with control parameters, use 
the Load from file button ( ) and using the Load from File dialog box that appears. 
Data must be separated by spaces or tabs.

If there is an Optimization or Sensitivity interface in the model, containing control 
variable nodes, these show up in a separate table under Control Variables and 

Parameters. Use the Solve for column to deactivate individual control variables as 
needed. Variables not supported by the currently selected solver are marked by a 
warning sign ( ) in the first column, which disappears if you manually choose not to 
include it in the solution.

C O N S T R A I N T S

The first table under Constraints lets you specify additional constraints to be imposed 
on the optimum solution. The Expression column accepts any globally available 
expression which evaluates to a real number. Constraints can be functions of the 
control variables both directly and indirectly via PDE solution variables. The Lower 

bound and Upper bound columns can only contain parameter expressions; they must 
not depend on control variables, PDE solution variables, or any other user-defined 
variables, but can include model parameters, physical constants and units. One bound 
column can be left blank to indicate that no upper or lower bound is required.

The Evaluate for column specifies the study step for which each constraint will be 
evaluated. Available options are the last study step in the sequence plus all Study 

The Optimization solver determines whether bounds are allowed or not. 
The Monte Carlo solver can only be run when both a lower and an upper 
bound are given; the MMA solver also needs bounds but can estimate 
them automatically — but at a cost.

If you have the LiveLink™ for Excel®, you can also save and load control 
parameters to and from Microsoft Excel Workbook (*.xlsx) files.
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Reference nodes. When a gradient-based solver is used, the column is not active: all 
contributions are then evaluated for the same study step.

If there is an Optimization interface in the model, containing inequality constraint 
nodes, these also show up in a separate table under Constraints. Use the Active column 
to deactivate individual constraints as needed. Constraints not supported by the 
currently selected solver are marked by a warning sign ( ) in the first column, which 
disappears if you manually choose to deactivate the constraint.

For some optimization solvers, you can select a Constraint handling method. The 
possible options are Penalty and Augmented Lagrangian. The former is the default when 
available and requires no further settings. Choosing the Augmented Lagrangian method 
activates additional options to control its behavior and accuracy. See Constraint 
Handling for Derivative-Free Methods for further details.

For derivative-free optimization solvers that support the Penalty constraint handling 
method (Nelder-Mead, Coordinate search, and Monte Carlo) and for COBYLA you 
can select the Enforce design constraints strictly check box to evaluate design constraints 
before the forward problem is solved and avoid running the forward problem if there 
are infeasible design constraints. All constraints that do not depend on the solution of 
the forward problem are considered to be design constraints. With the Enforce design 

constraints strictly check box selected (the default), the solver evaluates all design 
constraints before the forward problem is run. If infeasible constraints are found, the 
forward problem is not run, and the optimization solver proceeds to the next iteration.

O U T P U T  W H I L E  S O L V I N G

Plot
Select Plot and choose a Plot group to update after each major iteration of the 
optimization algorithm.

Probes
Select which Probes to evaluate and plot in each iteration.

Keep objective values in table
Select the Keep objective values in table check box to retain the table containing control 
variable and objective function values after the solver completes. Choose an existing 
Output table, or select New to create a new table. After computing the study, the Output 

table setting will be changed to the table actually being used.

The derivative-free solvers add a new line to this table for each evaluation of the 
objective function, while the gradient-based solvers add a new line for every accepted 
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step. When using derivative-free methods, the control variable values are also displayed 
in the table. Objective values displayed on the last line of the table are the converged 
result of the optimization when the Nelder-Mead, BOBYQA, Coordinate search, MMA, 
Levenberg-Marquardt, or SNOPT solver is used.

Select the Show individual objective values check box to include one table column for 
each contribution to the objective. Otherwise, only the total objective is displayed.

Select the Table graph check box to plot the objective function values displayed in the 
objective table. Choose an existing Plot window, including the standard Graphics 
window, or select New window. After computing the study, the Plot window setting will 
be changed to the window actually being used.

Keep constraint values in table
Only available for derivate-free methods. Select the Keep constraint values in table 
check box to retain the table containing global constraint values after the solver 
completes. Choose an existing Constraint table, or select New to create a new table. 
After computing the study, the Constraint table setting will be changed to the table 
actually being used.

The derivative-free solvers add a new line to this table for each evaluation of the 
objective function. When using the Nelder-Mead, BOBYQA, or Coordinate search solver, 
the control variable and constraint values displayed on the last line correspond to the 
converged result of the optimization.

Compute confidence intervals
Only available for the Levenberg-Marquardt solver. Select the Compute confidence 

intervals check box to retain the table containing individual confidence intervals for 
every global control parameter. Specify the Confidence level (0.95 by default, meaning 
the 95% confidence interval). Choose an existing Output table, or select New to create 
a new table. If an existing table has been chosen, the data in the table will be overridden 
by the confidence intervals data. Each row in the table corresponds to one global 
control parameter in the order they are given in tables in the Control Variables and 

Parameters section, assuming that the confidence interval for each parameter has been 
computed. When the confidence interval for some parameter cannot be computed a 
warning is given. The confidence intervals table is also printed out in the log. 
Confidence intervals for individual parameters are computed using the t-test statistic 
and the linear approximation method (Ref. 2). The confidence interval for an 
individual parameter θj for a confidence level 1−α is given by
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where σj is the standard deviation of the parameter θj, n is the number of data points, 
and p is the number of parameters to identify (Ref. 2). Here,

is the percentage point of a t-variable with n-p degrees of freedom that leaves a 
probability of α /2 in the upper tail and 1− α /2 in the lower tail. The standard deviation 
σj is computed using the linear approximation of the Hessian, as given in Ref. 1. 
Moreover, it is assumed that the observations on the independent variable are 
measured without error and that the random errors in the dependent variable are 
normally and independently distributed. No confidence intervals are computed for 
control variable fields.

Optimization log
Choose Minimal, Normal (the default), or Detailed to control the amount of information 
output from the optimization solver and the inner solvers it calls.

Memory settings for jobs
These settings are only available for the derivative-free optimization methods: 
Coordinate search, Monte Carlo, Nelder-Mead, BOBYQA, and COBYLA.

You can use the Keep solutions in memory list to control how to store the solutions from 
the individual optimization solutions. Select All to store all the optimizations solutions 
in memory, or select Only last or Automatic (the default) to store only the last solution 
from the optimization job. If the there are Parametric Sweep study steps in an 
Optimization study, the default option (Automatic) will save the last solution from the 
optimization job and all solutions from the parametric jobs.

Select the Stop if error check box to stop the optimization job at once if an error occurs.

R E F E R E N C E S  F O R  T H E  C O N F I D E N C E  I N T E R V A L

1. N. Börlin, “Nonlinear Optimization. Least Squares Problems — The 
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2. J.O. Rawlings, S.G. Pantula, and D.A. Dickey, Applied Regression Analysis: A 
Research Tool, 2nd Edition, Springer Texts in Statistics, Springer-Verlag, New York, 
1998.

θj t
1 α

2
--- n p–,– 

 
σj±

 
 
 

t
1 α

2
--- n p–,– 

 



T H E  P A R A M E T E R  E S T I M A T I O N  S T U D Y  |  77

T h e  Pa r ame t e r  E s t ima t i o n  S t u d y

The Parameter Estimation ( ) study node provides a simplified interface for 
performing least-squares parameter estimation. It can be used when the reference data 
is a function of time or a single parameter, and the multiphysics model result expected 
to match the data is a single global expression evaluated for a selected study step in the 
same study.

When the reference data consists of measured values, you typically first import it as an 
interpolation function which you can easily plot and visually compare to the result of 
your multiphysics model. The Parameter Estimation study node can refer directly to 
the interpolation function and is independent of whether the interpolation function 
was specified directly in the user interface or imported from a file, and is also 
independent of the file format used.

Alternately, the reference data can be given as a user-defined expression which is 
evaluated at the time steps or parameter values specified in the corresponding study 
step. This is useful, for example, when estimating coefficients of a polynomial expected 
to match the model output, and in general when estimating parameters in a 
mathematical model intended to replicate the output of the full multiphysics model.

The parameter estimation problem is implemented as an optimization problem 
minimizing a sum of squared differences between model and reference data. The sum 
is computed over time or parameter steps as specified either in the argument column 
of an interpolation function used as reference data, or in the study step selected for 
evaluation of the model data.

M O D E L  D A T A

Choose one of the allowed study steps from the Study step list. Click the Go to Source 
button ) to move to the Settings window for the selected study node. Enter a global 
Model expression which is evaluated at each time or parameter step, where it is 
compared to the corresponding reference data. You can also click the Add 

Expression ( ) and Replace Expression ( ) buttons to search through a list of 
predefined expressions.

R E F E R E N C E  D A T A

Select a Reference data source: Interpolation function or User defined. If you choose an 
interpolation function as data source, its argument column will decide at which time 
or parameter values the difference between model and reference data is evaluated. 
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When the data source is set to User defined, enter a Reference expression or click the 
Replace Expression ( ) buttons to search through a list of predefined expressions. You 
can also press Ctrl+Space to add a predefined expression to the text field. The 
difference between the Model expression and the Reference expression is then evaluated 
at output time steps or parameter values as specified in the selected Study step.

P A R A M E T E R S

Click the Add ( ) button to add one of the parameters defined in the Settings 
window for Parameters under Global Definitions to the set of parameters to be 
estimated. Use the Move Up ( ), Move Down ( ), and Delete ( ) buttons under 
the table to organize the data.

From a list in the Parameter name column, select one of the available global parameters. 
Specify an Initial value which is used as initial guess when estimating the parameter.

The Scale column is important. Each control variable is rescaled with its specified scale. 
This means, in practice, that the solvers only get to see the parameters divided by their 
corresponding scale, and it is on these rescaled variables that all tolerances are applied 
— both user-defined and internal tolerances intended to ensure the stability of the 
optimization methods. The default value is 1, which makes the solver work with the 
original, unscaled, parameters.

Use the Lower bound and Upper bound columns to set lower and upper bounds on the 
parameters. The Optimization solver only evaluates the objective function within these 
bounds. When doing parameter estimation, bounds are typically not needed and the 
cells can therefore be left empty.

An alternative to specifying parameter names and values directly in the table is to 
specify them in a text file. Use the Load from File button ( ) to browse to such a text 
file. The program appends the read names and values to the current table. The format 
of the text file must be such that the parameter names appear in the first column and 
the values for each parameter appear row-wise with a space separating the name and 
values, and a space separating the values. Click the Save to File button ( ) to save the 

If you choose to add bounds to help the solver, make sure to check the 
solution afterward. If any of the estimated parameters has reached its 
bound value, then the bound should be relaxed or the parameter should 
be eliminated from the problem. In both cases, it is necessary to solve the 
modified problem one more time.
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contents of the table to a text file (or to a Microsoft Excel Workbook spreadsheet if the 
license includes LiveLink™ for Excel®).

P A R A M E T E R  E S T I M A T I O N  M E T H O D

Select an optimization Method — BOBYQA (the default), Levenberg-Marquardt, or SNOPT 

— to solve the parameter estimation problem. Choose BOBYQA when the parameters 
to be estimated control the geometry, mesh or any other aspect of the model which is 
not represented as a term in the model equations. Otherwise try Levenberg-Marquardt, 
which is generally faster than SNOPT but does not support bounds on the parameters.

Specify the relative Optimality tolerance. The value is applied on rescaled variables, 
using the scale specified for each parameter. The default value of this setting varies 
depending on the selected optimization Method. The Maximum number of objective 

evaluations limits the number of times the objective function is evaluated, which is 
related to the number of times the multiphysics system is simulated for different 
attempted values of the parameters.

Set the Least-squares time/parameter method to choose how the parameter estimation 
defined times or parameters should be used. If you choose Manual (the default), all 
parameter estimation defined time or parameter values are merged with the time or 
parameter values defined in general parameter value lists. If From least-squares objective 
is chosen, only time or parameter values defined by the parameter estimation are used 
and all other time or parameter values are disregarded.

O U T P U T  W H I L E  S O L V I N G

The settings in the Output While Solving section are identical to the corresponding 
settings in the Optimization study step. See Output While Solving under The 
Optimization Study.

The Least-squares time/parameter method list only appears in a model 
where there is a least-squares objective.
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Abou t  t h e  Op t im i z a t i o n  S o l v e r s

The Optimization Module provides a selection of optimization solver algorithms 
which can be divides into two main groups: on one hand gradient-based solvers and 
on the other hand derivative-free solvers. The two groups are suitable for different 
types of problems and have different performance characteristics.

In this section:

• About Derivative-Free Solvers

• About Gradient-Based Solvers

• The Coordinate Search Solver

• The Monte Carlo Solver

• The Nelder-Mead Solver

• The BOBYQA Solver

• The COBYLA Solver

• The SNOPT Solver

• The MMA Solver

• The Levenberg-Marquardt Solver

• About Optimality Tolerances

• About Constraint Handling

• References for the Optimization Solvers

About Derivative-Free Solvers

The defining characteristic of the derivative-free solvers is that they do not need to 
compute derivatives of the objective function with respect to the control variables. 
They do not even require the objective function to be differentiable in principle. This 
characteristic makes them suitable for problems where the objective function is 
nonsmooth or contains noise.

One typical example of a noisy objective function is when the control variables define 
geometry dimensions. The geometry changes induced by modifying the control 
variables then lead to different finite element meshes, superimposing different 
discretization errors on the objective function when evaluated for different control 
variable values.
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Since the derivative-free solvers do not trust the pointwise behavior of the objective 
function to be a good indicator of where to search for the next, improved, update to 
the control variables, they must rely on sampling the objective function at different 
positions in the control variable space. This is more expensive than following a single 
path toward the optimum but also more robust. Some of the performance penalty is 
offset by the fact that evaluations that do not depend on one another can be done in 
parallel — for example, in a cluster environment.

Finally, derivative-free solvers can be further subdivided into local, “hill-climbing,” 
methods and global, evolutionary or statistical, methods. The former type starts from 
an initial guess and strives to improve the objective function in a stepwise manner. 
Imagine a group of people trying to climb a hill together in dense fog; as long as they 
stay together and move upward, they find a top but not necessarily the highest one. 
Global methods, in contrast, try to produce a map of the entire design space, refining 
it iteratively in areas that appear to be good candidates for containing the global 
optimum.

The Optimization Module provides five different derivative-free algorithms:

• The Coordinate search solver aims at improving the objective function along the 
coordinate directions of the control variable space. See The Coordinate Search 
Solver.

• The Monte Carlo solver samples points randomly with uniform distribution inside a 
box specified by the user. See The Monte Carlo Solver.

• The Nelder-Mead solver walks toward improved objective function values by 
iteratively replacing the worst corner of a simplex in the control variable space. See 
The Nelder-Mead Solver.

• The BOBYQA solver walks toward improved objective function values by using an 
iteratively constructed quadratic approximation of the objective. See The BOBYQA 
Solver.

• The COBYLA solver solves a sequence of linear approximations constructed from 
objective and constraint values sampled at the corners of a simplex in control 
variable space. See The COBYLA Solver.

These methods are each described in more details below.

About Gradient-Based Solvers

The defining characteristic of a gradient-based solver is that follows a path in the 
control variable space where each new iterate is based on local derivative information 
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evaluated at previously visited points. The methods implemented in the Optimization 
Module require the complete vector of first-order derivatives of the objective function 
with respect to the discrete vector of control variable degrees of freedom, which is 
referred to as the discrete gradient of the objective function in the control variable 
space.

The gradient can be computed in different ways. In general, the Adjoint method is the 
most efficient (and also the default), followed by the Forward method. The pure 
Numeric method is the most expensive as it is based on repeated solution of the 
multiphysics problem, while the Forward numeric method requires only repeated 
assembly of the problem residual.

The Optimization module provides three different gradient-based algorithms:

• The SNOPT solver is a general purpose solver suitable for dealing with large-scale 
problems with many or difficult constraints. See The SNOPT Solver.

• The MMA solver can handle problems of any form and is especially suitable for 
problems with a large number of control variables, such as topology optimization. 
See The MMA Solver.

• The Levenberg-Marquardt solver is specifically designed for solving least-squares 
problems. See The Levenberg-Marquardt Solver.

These methods are each described in more details below.

The Coordinate Search Solver

The Coordinate search solver aims at improving the objective function along the 
coordinate directions of the control parameter space. The step lengths are decreased 
or increased according to the values of the objective function. The Coordinate search 
solver does not directly evaluate gradients of the objective function. Gradients are not 
available for all types of parameters or might not be mathematically well-defined in 
certain circumstances. One example is an objective function that contains noise.

However, when the solver has collected enough information around the current search 
point, an estimate of the gradient is constructed and a line search along this direction 
is attempted before a new evaluation along the coordinate directions. This accelerates 
the search procedure, in particular for points close to (local) minima. The algorithm is 
based on the description in Ch. 7 in Ref. 1.
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The Monte Carlo Solver

The Monte Carlo solver samples points randomly with uniform distribution inside a 
box specified by the user. This solver is slow for finding accurate values of a minimizer 
of the objective function; however, it is useful for gathering statistical data of design 
variations by analyzing the range of values the objective function takes. As compared 
to the other optimization algorithms implemented in COMSOL Multiphysics, it does 
not get stuck in local minima. It always explores the whole search space specified by 
the parameter bounds.

The generation of random numbers in the Monte Carlo solver is controlled by the value 
of the Random seed. If the check box is cleared, the random number generator is 
initialized by a number based on the current system time. In this case, two runs 
produce in general different sets of parameters during operation. If a seed is given, the 
parameter selection is random during the operation of the solver but produces the 
same sequence of numbers from one run of the optimization solver to the next.

The Nelder-Mead Solver

The Nelder-Mead solver relies on a simplex of N+1 points, where N is the number of 
control variables. The solver does not use derivatives of the objective function. In a 
Nelder-Mead iteration, the solver uses reflections, expansions, and contractions to 
improve the worst point in the simplex.

The implementation in COMSOL Multiphysics includes a restart procedure for the 
case when the simplex shape degenerates (that is, the simplex collapses along a 
direction) and follows the discussion of the Nelder-Mead method in Ch. 8 in Ref. 1 
employing the parallelization strategy described in Ref. 2. The sufficient decrease 
condition used is a combination of the one used in Algorithm 8.2 and the one 
described on p. 160 (due to Kelley) with the regeneration. This implementation has 
been found to give somewhat better performance than the plain Algorithm 8.2 on a 
few test examples, in particular because the regeneration of a new simplex with equal 
lengths on edges gives better search directions. Moreover, the solver respects lower 
and upper bounds in the control variable space by suitably restricting the length of 
reflections.

The BOBYQA Solver

The name BOBYQA is an acronym for Bound Optimization by Quadratic 
Approximation. The basic idea of the method is to iteratively approximate the 
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objective function by a quadratic model which is valid in a region around the current 
iterate, the so-called trust region. The quadratic model is updated by minimizing the 
Frobenius norm of the difference in the Hessians of the two consecutive quadratic 
approximations. The implementation in COMSOL is based on Ref. 3. There are, 
however, some modifications:

•  The number of interpolation conditions is fixed to 2n+1 where n is the number of 
control variables, since the updating of the quadratic approximation requires only 
O(n2) operations in that case.

• Since the COMSOL implementation works in scaled control variables, the initial 
trust region radius is fixed at 0.2 in relative terms.

• Subroutine RESCUE is not included due to the unavailability of test problems that 
would invoke that procedure. Instead, an error message is given.

The COBYLA Solver

The name COBYLA is an acronym for Constrained Optimization by Linear 
Approximation. It is an iterative method for derivative-free constrained optimization. 
The method maintains and updates linear approximations to both the objective 
function and to each constraint. The approximations are based on objective and 
constraint values computed at the vertices of a well-formed simplex. Each iteration 
solves a linear programming problem inside a trust region whose radius decreases as 
the method progresses toward a constrained optimum. 

Note that COBYLA treats simple bounds as constraints, which can cause bound 
violations.

Further details can be found in Ref. 4.

The SNOPT Solver

The SNOPT solver uses a gradient-based optimization technique to find optimal 
solutions to a very general class of optimization problems. It requires gradients of both 
the objective function and all constraints, which can either be computed externally 
(analytically or semi-numerically) or internally, using numeric differentiation.

The underlying algorithm is an implementation of sequential quadratic programming 
(SQP). This means that SNOPT solves a sequence of approximations to the original 
problem, where the objective function is assumed to be a quadratic polynomial and 
constraints are treated as linear. Steps in this sequence are referred to as major or outer 
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iterations. Each approximate quadratic programming (QP) problem is also solved 
iteratively, requiring a number of minor or inner iterations. The QP solver returns a 
step direction to the outer SQP algorithm, which decides on a step length and updates 
the QP approximation before proceeding to the next major iteration. 

The overall structure of SNOPT as well as the default QP solver (Cholesky) assume 
that optimal solutions are more likely to be found at corners of the feasible set, bound 
by constraints, than in the interior of the feasible set. Therefore, the method performs 
best on problems with many active constraints relative to the number of control 
variable degrees of freedom, such that close to the optimum, most degrees of freedom 
are bound by constraints and only a few are free. Such free degrees of freedom are 
referred to as superbasic variables. When the number of such superbasic variables 
becomes large, the full Cholesky factorization-based QP-solver is unsuitable. Instead 
one of the iterative, conjugate gradients or quasi-Newton, methods should be 
selected instead. For details, see Ref. 5 and Ref. 6.

C O M M A N D - L I N E  O P T I O N S

SNOPT can optionally output diagnostic information to a file. The file contents and 
format are described in Ref. 5. To turn this functionality on, set the following 
command-line options when starting COMSOL Multiphysics:

-cs.snoptprintdir <dir> -cs.snoptprintfile <filename>

where <dir> is the desired output directory and <filename> is the filename. You can 
also specify the same options in the applicable INI file as

-Dcs.snoptprintdir=<dir>
-Dcs.snoptprintfile=<filename>

See The COMSOL Commands in the COMSOL Multiphysics Reference Manual for 
further information about setting options when starting COMSOL Multiphysics. 

The MMA Solver

The MMA implementation in the Optimization Module is the globally convergent 
version of the method of moving asymptotes, referred to as GCMMA in Ref. 7. 

MMA Method of Moving Asymptotes, GCMMA, Globally Convergent 
MMA, and Globally Convergent Method of Moving Asymptotes 
authored by Krister Svanberg. Copyright © 2013 Krister Svanberg.
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This is a three-level algorithm:

• Outer iteration k uses the current control variable estimate, xk, to evaluate objective 
function, constraints and their gradients, which are used together with current 
asymptote estimates, lk and uk, to construct an approximating subproblem. This 
subproblem, which is guaranteed to be convex and feasible, is passed to the inner 
iterations.

• Each inner iteration m solves an approximating subproblem for its unique optimum 
xkm and then evaluates the true objective function and constraints at this point. If 
the approximating subproblem is found to be conservative compared to the true 
function values, the inner iteration is terminated and the point is accepted as the 
next outer estimate xk+1. Otherwise, the approximating subproblem is modified to 
make it more conservative and then passed to the next inner iteration.

• The subproblem in each inner iteration is solved using a dual active set strategy. The 
approximating subproblems are nonlinear and inequality-constrained, but have a 
special structure which makes solving the primal problem for fixed dual variables 
very fast. From the solution to the primal problem, a gradient and full Hessian can 
be computed for the dual problem, which is solved using a modified Newton active 
set algorithm.

Note that function (objective and constraints) gradients are computed strictly once in 
each outer iteration, while function values must be computed once for each extra inner 
iteration required. The innermost level sees only an analytical approximating form of 
the subproblem where current function and gradient estimates appear in various 
coefficients.

The special structure of the generated approximating subproblems influences the 
global behavior of the algorithm. In contrast to the SNOPT and 
Levenberg-Marquardt solvers, which rely on approximating second-order information 
about the objective function, MMA is essentially a linear method. Its subproblems are 
linear approximations to the original problem but with barrier-like rational function 
contributions controlled by the moving asymptotes. No information about the 
problem is retained between outer iterations except the current position of the 
asymptotes.

In practice, this means that MMA does not show the quadratic convergence close to 
the optimum associated with Newton-like methods. In fact, there are very simple 
problems dominated by a quadratic term in the objective function for which MMA 
converges very slowly or not at all. In particular, in order for MMA to work efficiently, 
least-squares problems must be formulated using Least Squares Objective features in 
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an Optimization interface. These features trigger a reformulation of the problem to a 
form that is more suitable for MMA. Moreover, if the defect is complex valued, only 
the real part is used by MMA internally.

Because of the linear approximation of the objective function, the first inner iteration 
in each outer MMA iteration effectively steps into a corner of the feasible set, where it 
is completely bound by constraints and simple bounds. If this point is found to be 
nonconservative, as is the case if the objective function is convex with an optimum in 
the interior of the feasible set, the inner iteration generates a series of iterates gradually 
moving away from the constraints until a conservative point is found. This behavior 
favors points close to the constraints, in contrast to the line search used in SNOPT and 
the trust region in Levenberg-Marquardt which favor points close to the previous 
iterate. If the objective function has multiple local minima, the different methods can 
therefore be expected to find different local solutions.

For further details, see Ref. 7, which you can find under <COMSOL_root>/doc/pdf/
Optimization_Module/gcmma.pdf, where <COMSOL_root> is the root folder of your 
COMSOL installation.

The Levenberg-Marquardt Solver

The Levenberg-Marquardt solver works exclusively with objective functions of 
least-squares type. Constraints are not supported. Because this method is designed 
specifically for solving problems of least-squares type, it typically converges faster than 
SNOPT for such problems. The objective function is

 (5-1)

where M is the number of series (measurement series), Jm is the number of 
measurements, and Kjm is the number of points. The variable x is the space 
coordinates, η are the parameters for which the cost function should be minimized and 
um(x, p, η) solves a given PDE or ODE. The variable p is time if the PDE or ODE is 
time-dependent but it can also represent any parameter when the forward problem is 
stationary. The functions wjm are weight functions, and fjm represent the difference 
between some model function gjm and some measured data gjmk; that is, fjm can be 
written as

 (5-2)

V η( ) 1
2
--- wjmfjm

2 xjmk( um x pjm η, ,( ) η Cm, ),,

k 1=

Kjm


j 1=

Jm


m 1=

M

=

fjm xjmk( um x pjm η, ,( ) η Cm, ),, gjm xjmk( um x pjm η, ,( ) η Cm, ) ĝjmk–,,=
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The Levenberg-Marquardt algorithm as implemented in the Optimization Module 
relies on two fundamental ideas: evaluation of an approximate Hessian and 
regularization of the Hessian approximation. The special structure of least-squares 
objective functions allows cheap evaluation of an approximate Hessian (matrix of 
second derivatives), which can in principle be used directly in a Newton iteration. 
However, least-squares problems are also often ill-conditioned, making the full 
Newton process unstable. Therefore, the Hessian is modified using a regularization 
parameter to guarantee its positive definiteness. This parameter is updated between 
iterations, based on the success or failure of the previous step. For further details, see 
Ref. 8.

About Optimality Tolerances

The optimality tolerance is an important setting for all optimization solvers. It is 
intended to represent the relative accuracy in the final scaled control variable values, 
but because of the wide differences between different solver implementations, uniform 
behavior cannot be guaranteed. 

In particular, the optimality tolerance can play tricks on you if your objective function 
or your optimization variables are badly scaled. Therefore, take care to specify correct 
scales for your control variables and make sure that objective functions and constraints 
are of order 1 — or at least not too far from — for reasonable values of the control 
variables.

Tweaking the Optimality tolerance parameter might be necessary if you are confronted 
with problems related to convergence. As an example, if the optimization solver 
reports a converged solution after just a few iterations, try to restart it with a tighter 
tolerance to make sure it has actually found the solution. If, on the contrary, it seems 
to iterate forever — despite the value of the objective function having converged 
(check the output on the Log page in the Progress window) — chances are that the 
tolerance value is too strict. 

O P T I M A L I T Y  T O L E R A N C E  F O R  D E R I V A T I V E - F R E E  M E T H O D S

For the derivative-free optimization methods, the optimization tolerance, with a 
default value of 0.01, is used to determine whether a stationary point has been reached. 
The Coordinate search, BOBYQA, COBYLA, and Nelder-Mead methods stop iterating as 
soon as no improvement over the current best estimate can be found with steps in the 
scaled control variables of relative size larger than or equal to the optimality tolerance. 
For the Monte Carlo solver, the iteration stops when a new sampling point improves the 
objective function but is within the optimality tolerance to the previous best point.
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Compared to gradient-based optimization methods, which improve based upon the 
gradient of the objective function with respect to control variables, derivative-free 
methods explore the region around the current point by function evaluations only and 
use that information for determining convergence. 

O P T I M A L I T Y  T O L E R A N C E  F O R  S N O P T

For SNOPT, the optimality tolerance parameter (corresponding to the major 
optimality tolerance in Ref. 5 and further explained together with parameter Opttol), 
with a default of 1.0·10−3, is used by the linear and quadratic solvers to determine, on 
the basis of the reduced-gradient size, whether optimality has been reached. More 
precisely, it regulates the accuracy to which the final iterate in SNOPT is required to 
fulfill the first-order conditions for optimality. 

When SNOPT cannot achieve the requested tolerance level, the solver eventually 
returns a solution together with a warning message as follows:

• The warning message “requested accuracy could not be achieved” refers to the case 
when a feasible solution has been found, but the requested accuracy cannot be 
achieved. Hence, an abnormal termination has occurred, but the solver is within 
good reach of satisfying the Optimality tolerance. If this happens, check that the 
Optimality tolerance is not too small.

• The warning message “the current point cannot be improved upon” can occur in 
cases when the objective or constraint evaluation requires an iterative process which 
is terminated as soon as a given tolerance is achieved, or when the function 
evaluation contains some other source of noise. In such case the evaluation might 
be accurate to rather few significant digits, and gradients are probably unreliable.

Theoretically the Optimality tolerance should not be set smaller than the square-root 
of the function precision. The latter is the expected stability of the numerical model 

The returned point is not necessarily located close to a stationary point to 
within the optimality tolerance. When problems are badly scaled or 
functions are nonsmooth (for example, because of noise in the objective 
evaluation), the algorithms might miss an opportunity for improvement 
that requires an absolute step length larger than the optimality tolerance 
times the specified scale. Also, the Monte Carlo solver does not explore 
all directions systematically but rather determines convergence based on 
one randomly sampled point only. In case of convergence problems, try 
to reduce the optimality tolerance, or choose a different initial condition.
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rather than its accuracy as a model of physical reality. When using a direct linear 
solver on a linear model, the function precision is generally of the same order as the 
inverse of the condition number. For a nonlinear or iterative solver, you can expect 
the precision to be of the same order as the solver tolerances, which is then also the 
numerical precision in the evaluation of the objective and constraints. 

Furthermore, even when you set the Optimality tolerance based on the function 
precision, the same exit condition might occur. At present, the only remedy is to 
increase the accuracy of the function calculation, using all available means.

O P T I M A L I T Y  T O L E R A N C E  F O R  M M A

The MMA solver terminates when the relative change in all scaled control variables is 
less than the specified optimality tolerance parameter, with a default of 1e-3. The 
relative change is defined as the change in the variable since the last outer iteration 
divided by the range of the variable. The range of the variable is the upper bound 
minus the lower bound. For unbounded variables, the MMA solver internally estimates 
bounds based on the previous iteration points.

O P T I M A L I T Y  T O L E R A N C E  F O R  L E V E N B E R G - M A R Q U A R D T

Let tol be the specified optimality tolerance. Define told = γd·tol, where γd is the defect 
reduction tolerance factor, and tolx = γx·tol, where γx is the control variable tolerance 
factor. Moreover, let the defect vector be defined by

where ωl and fl are defined in Equation 5-1 and Equation 5-2, and L is the total 
number of the measurement evaluations. Then, when the Levenberg-Marquardt solver 
is used, the following conditions are used to determine when optimality has been 
reached:

• Terminate when the defect has been reduced enough; that is,

The final SNOPT iterate is not guaranteed to be a constrained local 
minimizer despite a successful run. For example, the constraint 
qualification might not hold at the final iterate. Similarly, the final iterate 
might satisfy the first-order but not the second-order conditions for 
optimality. Verifying second-order conditions requires second derivatives. 
See section 2.11 in Ref. 6 and p. 76 of the SNOPT User’s Guide (Ref. 5) 
for further details.

dl( )l 1=
L ωlfl=
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where d0 is the initial defect vector, and dj is the current defect vector.

• Terminate when the relative increment of the scaled control variable x is below the 
control variable tolerance; that is,

• Terminate when the cosine between the defect and the Jacobian columns is below 
the optimality tolerance; that is

where dj is the current defect vector and J is the Jacobian.

The default values of the optimality tolerance, defect reduction tolerance factor, and 
control variable tolerance factor are 1.0·10−3, 1, and 1, respectively. The termination 
condition defined as the first condition above is not used by default and should be 
enabled in order to be included.

About Constraint Handling

An important difference between the available optimization solvers is the types of 
constraints they can handle, and how they do it. Constraints specified in the 
Optimization interface and Optimization study step can be divided into three categories: 

• Simple bounds are upper and lower bounds prescribed directly on the individual 
control variables, for example in the Optimization study step.

• Pointwise constraints specify limits on an expression to be enforced at every node 
point in some region in space. In order to avoid excessively expensive gradient 
computations, such constraints are required to only depend on control variables 
directly and not indirectly via PDE solution variables. The constraint expression can, 
however, be a nonlinear expression in the control variables.

• General constraints specify limits on global scalar expressions, typically evaluated as 
integrals over some domain. This generates a single constraint, as compared to one 
for each mesh node for a pointwise constraint. Therefore, the solvers can afford to 
compute a complete gradient also when the constraint is a, possible nonlinear, 
function of the PDE solution.

dj 2
d0 2
-------------- told≤

xj xj 1–– 2 tolx≤

max
JT dj⋅( )i

J : i,( ) 2 dj 2
------------------------------------
 
 
 

tol≤
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Note that all constraints are treated as inequalities. An equality constraint can be 
implemented by specifying the same upper an lower bound for an expression. 
However, not all constraint handling methods are able to deal with the reduction in 
control variable space dimension which this implies. Therefore, when possible, it is 
better to perform a manual change of variables, eliminating a control variable 
dimension.

C O N S T R A I N T  H A N D L I N G  F O R  D E R I V A T I V E - F R E E  M E T H O D S

The derivative-free methods Coordinate search, Monte Carlo, Nelder-Mead, and COBYLA 
can internally handle simple bounds and general constraints on global scalar 
expressions. In practice this means that in addition to simple bounds and constraints 
defined in the Optimization study step, Integral Inequality Constraint nodes and Global 

Inequality Constraint nodes in Optimization interfaces are accounted for. 

The constraint handling algorithm used in Coordinate search, Monte Carlo, and 
Nelder-Mead is in principle based on filtering out candidate points in the control 
variable space which fall outside the feasible region, and to some extent adjust search 
directions accordingly. The procedure is not guaranteed to find a constrained local 
minimum fulfilling the KKT conditions.

COBYLA, in contrast, approximates objective function and constraints in a uniform way. 
Therefore, provided all functions are sufficiently smooth, it will in general find an 
approximate constrained local minimum. The returned solution may, however, lie 
slightly outside the feasible set. This can happen, in particular, if the constraints are 
nonlinear.

The Augmented Lagrangian Method
BOBYQA handles simple bounds internally, but general constraints only via an external 
iterative procedure based on repeated minimization of an augmented Lagrangian. This 
augmented Lagrangian method can also be used as an alternative to the internal 
penalty methods in the Coordinate search and Nelder-Mead solvers, but is not selected 
by default.

The basic principle behind the augmented Lagrangian method is to include the 
Lagrange multipliers of general constraints as control variables in an augmented 
problem. In the first iteration, the Lagrange multipliers are set to zero and a modified 
objective function including a quadratic penalty for constraint violation is minimized. 
This gives a solution which is in general outside the feasible set, that is, it violates the 
constraints. In each subsequent iteration, the Lagrange multipliers — as well as a 
number of penalty parameters — are updated based on the current constraint 
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violation, and a new subproblem is solved. The sequence of subproblems, which 
converges toward the feasible set from the outside, is terminated once a specified 
tolerance for constrain violation is reached.

The augmented Lagrangian method as such is very general and quite robust, but to be 
efficient, it requires balancing the effort spent on each subproblem against the 
improvement in each outer iteration. It also requires selection of an initial penalty 
factor. A higher penalty factor generally leads to faster convergence of the augmented 
Lagrangian algorithm, but subproblems become more ill-conditioned and there is a 
threshold beyond which the method may become unstable; conversely, a lower penalty 
factor makes the algorithm more robust but required more iterations.

In the Settings window for the Optimization study step, you can choose to use an 
Automatic or Manual definition of the initial Penalty parameter ρ. The automatic setting 
is default and computes an initial value based on the objective and constraint function 
values at the initial point. You can also limit the Maximum number of augmented 

iterations and select a strategy for updating δ (tolerance for the subsolver). The options 
Dynamic I and Dynamic II both tighten the subsolver tolerance from iteration to 
iteration, the latter providing some additional control. There is also a Manual option. 
Finally, specify the Constraint tolerance, that is, the maximum allowable constraint 
violation in the final solution.

Since the augmented Lagrangian method computes Lagrange multipliers for each 
constraint explicitly, these are also available for postprocessing. Their values represent 
the sensitivity (derivative) of the objective function with respect to changes in a 
constraint bound. In the Insert Expression and Add Expression menus, available for most 
postprocessing features, you will find the Lagrange multipliers under 
Model>Solver>Lagrange multipliers.

C O N S T R A I N T  H A N D L I N G  F O R  G R A D I E N T - B A S E D  M E T H O D S

The SNOPT algorithm handles constraints of all types efficiently. Constraint handling in 
this SQP method is based on linearizing the constraint in the outer, major, iteration, 
and using an active-set QP solver in the inner loop to decide which constraints are 
active and bounding the solution at the current iterate. This process requires accurate 
evaluation of the gradient of the constraints, also known as the constraint Jacobian.

The MMA algorithm accepts constraints of the same general type as SNOPT, requiring 
an accurate constraint Jacobian, but handles them differently. In each outer, major, 
iteration, linear and linearized constraints are combined with a linearized objective 
function into a convex smooth approximation whose unique optimum is always 
feasible unless the feasible set is empty. The globally convergent version of MMA 
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implemented in the Optimization module is conservative in a way which ensures that 
each major iterate is feasible not only with respect to the linearized constraints, but 
with respect to the fully nonlinear constraints.

The Levenberg-Marquardt solver does not support any type of constraints or bounds.
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1. A.R. Conn, K. Scheinberg, and L.N. Vicente, Introduction to Derivative-Free 
Optimization, MPS-SIAM Series on Optimization, SIAM, 2009.

2. D. Lee, and M. Wiswall, “A Parallel Implementation of the Simplex Function 
Minimization Routine”, Computational Economics, vol. 30, pp. 171–187, 2007.
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2009.
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In the MMA implementation, simple bounds are much less expensive 
memory-wise than global or pointwise constraints. In particular for 
control variable fields, simple control variable bounds (added by 
right-clicking on the Control Variable Field feature) are more efficient than 
enforcing the same bounds using a Pointwise Inequality Constraint feature.
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Lagrangian Methods with general lower-level constraints.”, SIAM Journal on 
Optimization, 18, pp. 1286–1309, 2007.

Ref. 7 is available in <COMSOL_root>/doc/pdf/
Optimization_Module/gcmma.pdf, where <COMSOL_root> is the root 
folder of your COMSOL installation.
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T h e  Op t im i z a t i o n  S o l v e r

The Optimization Solver node ( ) contains settings for selecting a gradient-based 
optimization method and specifying related solver properties.

G E N E R A L

The Optimality tolerance, Maximum number of model evaluations and Method settings are 
fundamental and can be controlled from an Optimization study step.

Defined by Study Step
Choose to let an Optimization study step control the fundamental optimization method 
settings (the default). For User Defined specify the settings directly in this node.

Optimality Tolerance
Specify the Optimality tolerance, which has default value 1e-3. See About 
Gradient-Based Solvers. Note that this can be too strict, in particular if the forward 
multiphysics model is not solved accurately enough. See About Optimality Tolerances. 

Maximum Number of Model Evaluations
Specify the Maximum number of model evaluations, which defaults to 1000. This 
number limits the number of times the objective function is evaluated, which in most 
cases is related to the number of times the multiphysics model is simulated for different 
values of the optimization control variable. Note, however, that it is not equal to the 
number of iterations taken by the optimizer because each iteration can invoke more 
than a single objective function evaluation. Furthermore, by setting this parameter to 
a smaller value and calling the optimization solver repeatedly, you can study the 

This section describes Solver features available with the Optimization 
Module. See also Studies and Solvers in the COMSOL Multiphysics 
Reference Manual for more information about solvers in general.

For a more extensive introduction to the mathematics implemented by 
this interface, see the Optimization Theory.

For a more extensive treatment of the gradient-based solvers available in 
this node, see About Gradient-Based Solvers.
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convergence rate and stop when further iterations with the optimization solver no 
longer have any significant impact on the value of the objective function.

O P T I M I Z A T I O N  S O L V E R

This section contains settings related to the numerical methods that the solvers use.

Method
The three available choices are SNOPT (the default), MMA and Levenberg-Marquardt. The 
Levenberg-Marquardt method can only be used for problems of least squares type 
without constraints or bounds on the control variables, while SNOPT and MMA can 
solve any type of optimization problem. See About Gradient-Based Solvers.

Solution
This setting controls the behavior when the solver node under the Optimization solver 
node returns a solution containing more than one solution vector (for example, a 
frequency response). The SNOPT and Levenberg-Marquardt solvers only support the 
Auto setting, meaning in practice the sum over frequencies and parameters or the last 
time step. For MMA, the options are as for the derivative-free solvers: Auto, Use first, 
Use last, Sum of objectives, Minimum of objectives, and Maximum of objectives. The last 
two settings make the MMA algorithms handle maximin and minimax problems 
efficiently.

Objective Contributions
When SNOPT or MMA is used, the expression used as objective function can be 
controlled through this setting. The default is All, in which case the sum of all objective 
contributions not deactivated in an Optimization study step are used as objective 
function.

By selecting Manual, you can enter an expression that is used as the objective function 
in the Objective expression field. The expression all_obj_contrib represents the sum 
of all objective contributions not deactivated in a controlling Optimization study step. 
Hence, this expressions leads to the same optimization problem as selecting All. Note, 
however, that MMA treats least-squares objective contributions in a more efficient way 
when All is selected.

When optimizing over a Time Dependent study step using a gradient-based 
solver, the objective and its gradient are always evaluated only for the last 
time step. MMA still presents multiple options, but these are effectively 
ignored since there is only one objective value that can be used.
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When you use Levenberg-Marquardt, the objective function is always the sum of all 
active least-squares objective contributions present in the model. 

Gradient Method
SNOPT, MMA and Levenberg-Marquardt are gradient-based methods. The gradient 
can be computed according to the choices Automatic, analytic (default), Forward, 
Adjoint, Forward Numeric and Numeric. The latter is not supported by MMA. When 
Automatic, analytic is chosen, either the adjoint method or the forward method is used 
to compute the gradient analytically. The adjoint method is used when the number of 
optimization degrees of freedom is larger than the number of objective functions plus 
the number of global and integral constraints plus two, otherwise the forward method 
is used.

It is also possible to explicitly choose to use either the adjoint or forward method using 
the corresponding alternatives from the menu. With the option Forward Numeric a 
semi-analytic approach is available where the gradient of the PDE residual with respect 
to control variables is computed by numerical perturbation and then substituted into 
the forward analytic method. When Numeric is chosen, finite differences are used to 
compute the gradient numerically.

Gradient Method Parameters for Time-Dependent Problems
For time-dependent problems, all analytic gradient methods have options to adjust the 
default integration tolerances for the sensitivity solver.

For the Forward and Forward Numeric gradient methods a Forward sensitivity rtol factor 
can be specified. This factor multiplied by the forward problem relative tolerance to 
calculate the relative tolerance for the sensitivity solver. You can also specify a Forward 

sensitivity scaled atol, which is a global absolute tolerance that is scaled with the initial 
conditions. The absolute tolerance for the sensitivity solution is updated if scaled 
absolute tolerances are updated for the forward problem.

When using the Adjoint gradient method, an Adjoint rtol factor and Adjoint scaled atol 

factors can be given, which control the accuracy of the adjoint solution, similarly to the 
corresponding Forward sensitivity factors. In addition an Adjoint quadrature rtol factor 
and an Adjoint quadrature atol can be given. These settings control the relative and 
absolute accuracy of time integrals (or quadratures) used to calculate objective 
function gradients. Note that the absolute tolerance is unscaled.

When the number of control variables is large, calculating the gradient 
numerically or with forward sensitivity can be time consuming.
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The Adjoint gradient method uses checkpointing to reduce the amount of data which 
needs to be stored from the forward to the backward (adjoint) solution stage. 
Optionally, set the number of Adjoint checkpointing steps to control the number of 
checkpoints stored.

Numeric Gradient Method Parameters
When the Numeric gradient method is selected, you can further specify a Difference 

interval (default 1.5E-8). This is the relative magnitude of the numerical perturbations 
to use for first-order gradient approximation in SNOPT and for all numeric 
differentiation in the Levenberg-Marquardt solver. The former automatically chooses 
between first- and second-order gradient approximation, using the specified relative 
Central difference interval (default 6.0E-6) for central differencing.

For the Levenberg-Marquardt method you can choose the Gradient approximation order 
explicitly. Selecting First gives a less accurate gradient, while selecting Second gives a 
better approximation of the gradient. However, Second requires twice as many 
evaluations of the objective function for each gradient compared to First. In many 
applications, the increased accuracy obtained by choosing Second is not worth this 
extra cost.

Store Functional Sensitivity
The sensitivity of the objective function is by default stored in the solution object such 
that it can be postprocessed after the solver has completed. To save memory by 
discarding this information, change Store functional sensitivity to Off. Instead choosing 
On for results while solving, sensitivity information is also computed continuously 
during solution and made available for probing and plotting while solving. This is the 
most expensive option.

SNOPT-Specific Settings
When using SNOPT, you have the possibility to specify which solver to use for solving 
linear systems containing a reduced Hessian approximation, which is in principle a full 
matrix. Solving a system involving this matrix is necessary in order to take a single step 
in the active-set algorithm used for solving the QP subproblems that are formed during 
each major SQP iteration. Select one of the following strategies from the QP Solver list:

• Cholesky — This option computes the full Cholesky factor of the reduced Hessian 
at the start of each major iteration. As the QP iterations (minor iterates) proceed, 
the dimension of the Cholesky factor changes with the number of superbasic 
variables and the factor is updated accordingly. If the number of superbasic variables 
increases beyond a preset limit (1000), the reduced Hessian cannot be stored and 
the solver switches to conjugate gradient.
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• Conjugate gradient — This method uses the conjugate-gradient method to solve all 
systems involving the reduced Hessian, which is only accessed implicitly in the form 
of a black-box linear operator on the superbasic variables. Since no data is stored 
between inner iterations, the method is most appropriate when the number of 
superbasics is large but each QP subproblem requires relatively few minor iterations. 
Selecting Conjugate gradient also triggers a limited-memory procedure which stores 
only a fixed number of BFGS update vectors together with a diagonal Hessian 
approximation between major iterations.

• Quasi-Newton — This method uses a quasi-Newton strategy to update an 
approximation of the Cholesky factor of the reduced Hessian as the iterations 
proceed. It has the same memory requirement as the Cholesky option, but does not 
recompute the complete Cholesky factor at the beginning of each major iteration. 
It can be an appropriate choice when the number of superbasics is large but the 
nonlinear problem is well-scaled and well-behaved such that relatively few major 
iterations are needed for the approximate Hessian to stabilize.

In the Use step condition field you can enter an expression that tells the optimization 
solver to reduce the step length in the current line search used by SNOPT to generate 
the next iterate.

The Quasi-Newton option for solving reduced Hessian systems must not 
be confused with the fact that the major SNOPT iterations always use a 
quasi-Newton BFGS strategy to approximate the full Hessian — also 
when using Cholesky factorization or conjugate gradients to solve the 
reduced systems.

The constraint Jacobian matrix is always assumed to be sparse such that 
sparse LU factors of the basic part of this matrix can be stored and 
updated when the set of superbasic variables changes. These factors are 
used implicitly to define the null space of the active constraints and appear 
in the implicit representation of the reduced gradient and Hessian.

• See The SNOPT Solver.

• See page 80 of the SNOPT User’s Guide (Ref. 5 under About the 
Optimization Solvers).
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The solver uses the condition to restrain the iterates from entering into areas in the 
control-variable space where the PDE problem is not well defined. A typical example 
is when a mesh element becomes inverted during geometry optimization using a 
Moving Mesh interface. A step limit condition that identifies this situation might be of 
the form minqual1_ale-0.05, where 0.05 is a threshold value for the mesh quality. 
This step limit condition has a direct analog in the stop condition for the 
time-dependent and parametric solvers.

When the step limit condition is violated, the solver reduces the line-search step until 
an acceptable point is found. However, because no Jacobian is computed for the step 
limit condition, there is no mechanism to prevent the solver from immediately 
attempting another step in the same infeasible direction. As a result, the solver might 
get stuck at the same point without converging until it reaches the maximum number 
of model evaluations or you stop the iteration manually.

You can specify a linesearch tolerance as a value between 0 and 1 in the Linesearch 

tolerance field (default value: 0.9). This controls the accuracy with which a step length 
will be located along the direction of search in each iteration. At the start of each 
linesearch, a target directional derivative for the merit function is identified. This 
parameter determines the accuracy to which this target value is approximated:

• The default value of 0.9 requests just moderate accuracy in the linesearch.

• If the nonlinear functions are cheap to evaluate, a more accurate search may be 
appropriate; try 0.1, 0.01, or 0.001. The number of major iterations might 
decrease.

• If the nonlinear functions are expensive to evaluate, a less accurate search may be 
appropriate. If all gradients are known, try a tolerance of 0.99. (The number of 
major iterations might increase, but the total number of function evaluations may 
decrease enough to compensate.)

• If not all gradients are known, a moderately accurate search remains appropriate.

Each search will require only 1–5 function values (typically), but many function calls 
are then needed to estimate missing gradients for the next iteration.

Only use the step limit condition as a last resort to keep the optimization 
solver in a feasible region. Instead, if possible, use pointwise constraints 
on the optimization variables to enforce the condition.
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From the Linesearch strategy list, choose Derivative (the default) or Nonderivative. At 
each major iteration a linesearch is used to improve the merit function. A derivative 
linesearch uses safeguarded cubic interpolation and requires both function and 
gradient values to compute estimates of the step. If some analytic derivatives are not 
provided, or a nonderivative linesearch is specified, SNOPT uses a linesearch based on 
safeguarded quadratic interpolation, which does not require gradient evaluations.

A nonderivative linesearch can be slightly less robust on difficult problems, and it is 
recommended that you use the default derivative linesearch if the functions and 
derivatives can be computed at approximately the same cost. If the gradients are very 
expensive relative to the functions, a nonderivative linesearch may give a significant 
decrease in computation time.

MMA-Specific Settings
By default, the MMA solver continues to iterate until the relative change in any control 
variable is less than the optimality tolerance. If the Maximum outer iterations option is 
enabled, the solver stops either on the tolerance criterion or when the number of 
iterations is more than the maximum specified.

The Optimization Module’s globally convergent version of the MMA solver has an 
inner loop which ensures that each new outer iteration point is feasible and improves 
on the objective function value. By default, the Maximum number of inner iterations per 

outer iteration is 10. When the maximum number of inner iterations is reached, the 
solver continues with the next outer iteration.

The Internal tolerance factor is multiplied by the optimality tolerance to provide an 
internal tolerance number that is used in the MMA algorithm to determine if the 
approximations done in the inner loop are feasible and improve on the objective 
function value. The default is 0.1. Decrease the factor to get stricter tolerances and a 
more conservative solver behavior.

The MMA algorithm penalizes violations of the constraints by a number that is 
calculated as the specified Constraint penalty factor times 1e-4 divided by the 
optimality tolerance. Increasing this factor for a given optimality tolerance forces the 
solver to better respect constraints, while relatively decreasing the influence of the 
objective function.

Levenberg-Marquardt-Specific Settings
The Levenberg-Marquardt method controls the step length and direction through a 
positive scalar regularization parameter. A value close to zero means that the 
optimization solver takes a step close to a full Gauss-Newton step. A large value means 
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that it takes a small step close to the steepest-descent direction. See The 
Levenberg-Marquardt Solver.

The Levenberg-Marquardt method controls this penalty factor internally and tries to 
have as small penalty as possible in order to approach second-order Newton 
convergence. Therefore, a small value of the Initial damping factor means that the solver 
tries to be aggressive initially, while a large value means that the solver is more cautious.

R E S U L T S  W H I L E  S O L V I N G

Select the Plot check box to plot the results while solving the model. Select a Plot group 
from the list and any applicable Probes.

A D V A N C E D

Use the Compensate for nojac terms list to specify whether to try to assemble the 
complete Jacobian if an incomplete Jacobian has been detected. Select:

• Automatic (the default) to try to assemble the complete Jacobian if an incomplete 
Jacobian has been detected. If the assembly of the complete Jacobian fails or in the 
case of nonconvergence, a warning is written and the incomplete Jacobian is used in 
the sensitivity analysis for stationary problems. For time-dependent problems, an 
error is returned.

• On to try to assemble the complete Jacobian if an incomplete Jacobian has been 
detected. If the assembly of the complete Jacobian fails or in the case of 
nonconvergence, an error is returned.

• Off to use the incomplete Jacobian in the sensitivity analysis.

See Theory for Stationary Sensitivity Analysis for details about the algorithm.

C O N S T A N T S

In this section you can define constants that can be used as temporary constants in the 
solver. You can use the constants in the model or to define values for internal solver 
parameters. Click the Add ( ) button to add a constant and then define its name in 
the Constant name column and its value (a numerical value or parameter expression) in 
the Constant value column. By default, any defined parameters are first added as the 
constant names, but you can change the names to define other constants. Click Delete 
( ) to remove the selected constant from the list.

L O G

The Log displays the information about the progress of the solver. 
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Ad v an c e d  S o l v e r  P r o p e r t i e s

This section provides detailed explanations of some of the properties that control the 
behavior of the SNOPT optimization solver in the Optimization Module.

When solving multiphysics optimization problems in the COMSOL Desktop using the 
Optimization interface, some of the properties listed in this section can be controlled 
while others always take their default values. Modifying the value of those properties 
requires that the value is changed using LiveLink™ for MATLAB® or by running a 
compiled COMSOL API history file.

In this section: 

• SNOPT Solver Properties

• MMA Solver Properties

SNOPT Solver Properties

F E A S T O L

Feasibility tolerance
Type: numeric
Default: 1.0·10−6

The solver tries to ensure that all bound and linear constraints are eventually satisfied 
to within the feasibility tolerance t. (Feasibility with respect to nonlinear constraints is 
instead judged by the major feasibility tolerance, majfeastol.)

If the bounds and linear constraints cannot be satisfied to within t, the problem is 
declared infeasible. Let sInf be the corresponding sum of infeasibilities. If sInf is quite 
small, it might be appropriate to raise t by a factor of 10 or 100. Otherwise you should 
suspect some error in the data.

In the following sections, ε represents the machine precision (available as 
eps in MATLAB) and is approximately equal to 2.2·10−16.

For a list of all available optimization solver properties see Optimization 
in the COMSOL Multiphysics Programming Reference Manual.
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Nonlinear functions are evaluated only at points that satisfy the bound and linear 
constraints. If there are regions where a function is undefined, every attempt should 
be made to eliminate these regions from the problem. For example, if

it is essential to place lower bounds on both variables. If t = 10−6, the bounds

x1 ≥ 10−5 and x2 ≥ 10−4 

might be appropriate. (The log singularity is more serious. In general, keep x as far 
away from singularities as possible.)

In practice, the solver uses t as a feasibility tolerance for satisfying the bound and linear 
constraints in each QP subproblem. If the sum of indefeasibility cannot be reduced to 
zero, the QP subproblem is declared infeasible. The solver is then in the Elastic mode 
thereafter (with only the linearized nonlinear constraints defined to be elastic).

F U N C P R E C

Function precision
Type: numeric
Default: ε0.8 ≈ 3.8·10−11

The relative function precision is intended to be a measure of the relative accuracy with 
which the nonlinear functions can be computed. For example, if f(x) is computed as 
1000.56789 for some relevant x and if the first 6 significant digits are known to be 
correct, the appropriate value for the function precision would be 10−6. (Ideally the 
functions should have a magnitude of order 1. If all functions are substantially less than 
1 in magnitude, the function precision should be the absolute precision. For example, 
if f(x) = 1.23456789·10−4 at some point and if the first 6 significant digits are known 
to be correct, the appropriate precision would be 10−10.)

The default value is appropriate for simple analytic functions.

In some cases the function values are the result of extensive computations, possibly 
involving an iterative procedure that can provide rather few digits of precision at 
reasonable cost. Specifying an appropriate function precision might lead to savings by 
allowing the line search procedure to terminate when the difference between function 
values along the search direction becomes as small as the absolute error in the values.

f x( ) x1 xlog 2+=
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H E S S U P D

Hessian updates
Type: integer
Default: 10

When the number of nonlinear variables is large (more than 75) or when the QP 
problem solver is set to conjugate-gradient, a limited-memory procedure stores a fixed 
number of BFGS update vectors and a diagonal Hessian approximation. In this case, if 
hessupd BFGS updates have already been carried out, all but the diagonal elements of 
the accumulated updates are discarded and the updating process starts again. Broadly 
speaking, the more updates stored, the better the quality of the approximate Hessian. 
However, the more vectors stored, the greater the cost of each QP iteration. The 
default value is likely to give a robust algorithm without significant expense, but faster 
convergence can sometimes be obtained with significantly fewer updates (for example, 
hessupd = 5).

M A J F E A S T O L

Major feasibility tolerance
Type: numeric
Default: 1.0·10−6

This parameter specifies how accurately the nonlinear constraints should be satisfied. 
The default value of 1.0·10−6 is appropriate when the linear and nonlinear constraints 
contain data to roughly that accuracy.

Let rowerr be the maximum nonlinear constraint violation, normalized by the size of 
the solution. It is required to satisfy

where violi is the violation of the ith nonlinear constraint. If some of the problem 
functions are known to be of low accuracy, a larger major feasibility tolerance might be 
appropriate.

O P T T O L

Optimality tolerance
Type: numeric
Default: 1.0·10−3

This is the major optimality tolerance and specifies the final accuracy of the dual 
variables. On successful termination, the solver computes a solution (x, s, π) such that

rowerr max 
i
violi x 1+( )⁄ majfeastol≤=



A D V A N C E D  S O L V E R  P R O P E R T I E S  |  107

where Compj is an estimate of the complementarity slackness for variable j. The values 
Compj are computed from the final QP solution using the reduced gradients 
dj = gj − πTaj, as above. Hence you have

Q P S O L V E R

QP problem solver
Type: string 'cholesky', 'cg', or 'qn'
Default: 'cholesky'

Specifies the active-set algorithm used to solve the QP problem, or in the nonlinear 
case, the QP subproblem.

'cholesky' holds the full Cholesky factor R of the reduced Hessian ZTHZ. As the 
QP iterations proceed, the dimension of R changes with the number of superbasic 
variables.

'qn' solves the QP subproblem using a quasi-Newton method. In this case, R is the 
factor of a quasi-Newton approximate reduced Hessian.

'cg' uses the conjugate-gradient method to solve all systems involving the reduced 
Hessian. No storage needs to be allocated for a Cholesky factor.

The Cholesky QP solver is the most robust but might require a significant amount of 
computation and memory if the number of superbasics is large. 

The quasi-Newton QP solver does not require the computation of the exact R at the 
start of each QP and might be appropriate when the number of superbasics is large but 
each QP subproblem requires relatively few minor iterations.

The conjugate-gradient QP solver is appropriate for problems with large numbers of 
degrees of freedom (many superbasic variables). The Hessian memory option 
'hessmem' is defaulted to 'limited' when this solver is used.

maxComp max 
j
Compj π⁄ opttol≤=

Compj

dj min xj lj– 1{ , }  if dj 0≥

dj–  min uj xj– 1{ , }  if dj 0<



=

See the SNOPT User’s Guide for further details.
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MMA Solver Properties

In addition to the settings available in the COMSOL Desktop, MMA when called 
through the API allows explicit tuning of the approximating subproblems solved in 
each inner iteration. In particular, update rules for the moving asymptotes can be 
modified. It is also possible to switch off the automatic transformation performed on 
least-squares, minimax and maximin problems, as well as disable the globally 
convergent extension of the MMA method.

For a list of all available options see Optimization in the COMSOL Multiphysics 
Programming Reference Manual.
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G l o s s a r y

This Glossary of Terms contains modeling terms in an optimization and sensitivity 
context. For general mathematical and finite element terms, and geometry and 
CAD terms specific to the COMSOL Multiphysics software and documentation see 
the glossary in the COMSOL Multiphysics Reference Manual. For references to 
more information about a term, see the index.
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G l o s s a r y  o f  T e rm s
adjoint method The adjoint method for sensitivity analysis is based on exploiting the 
adjoint identity given an objective functional to derive and solve a set of adjoint 
equations. The adjoint solution is then used to compute the functional sensitivity with 
respect to sensitivity parameters.

BFGS (Broyden–Fletcher–Goldfarb–Shanno) A specific family of optimization 
algorithms where updates are made to approximate the inverse of the Hessian matrix.

bounds An inequality constraint setting lower and upper bounds directly on each 
control variable degree of freedom.

contributions to objective function The objective function is a scalar function of the 
control variables. In the optimization interface, the objective is formed by the 
summation of contributions from global contributions, probe contributions, and 
integral contributions to the objective functions.

control variable The control variables parameterize the optimization or sensitivity 
problem. The objective function and constraint are expressed in the terms of the 
control variables. In the mathematical and engineering literature, the control variables 
are sometimes also referred to as optimization variables, design variables, or decision 
variable.

design constraint A constraint which can be evaluated before any multiphysics 
simulation has been performed. A design constrain can be expressed explicitly in the 
control variables, without involving the multiphysics problem solution.

design problem An optimization problem where the objective function quantifies the 
performance in a multiphysics model. For such problems, the control variable is 
sometimes referred to as the design variables. Problems of this kind arise in, for 
example, structural optimization, antenna design, and process optimization.

feasible set The control variables can be constrained to a feasible set. The feasible set 
is typically expressed by a set of constraints acting on the control variables. The feasible 
set can also be implicitly limited by the existence of a solution to a multiphysics 
problem.
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forward method The forward method for sensitivity analysis is based on solving the 
equations obtained by applying the chain rule of differentiation, with respect to 
sensitivity parameters, to the original DAEs.

global inequality constraint A constraint that sets upper and lower bounds on a general 
global expression, possibly involving both the control variables and the PDE solution.

integral inequality constraint A constraint that sets upper and lower bounds on an 
integral of an expression, possibly involving the PDE solution and control variables, 
over a set of geometric entities of the same dimension

objective function A single-valued function of the PDE solution and control variables 
representing the performance of a multiphysics model or how well a parameterized 
model matches measured data. Alternative terminology used for the objective function 
is cost function, goal function, or quantity of interest.

optimization problem The optimization problem is to find values of the control 
variables, belonging to a given feasible set, such that the objective function attains its 
minimum (or maximum) value.

parameter estimation problem An inverse problem where the objective function 
defines how well a parameterized model matches measured data. Replacing the 
parameters with control variables leads to an optimization problem, which can arise in, 
for example, geophysical imaging, nondestructive testing, and biomedical imaging.

PDE-constrained optimization problem An optimization problem where the feasible 
set is limited by the condition that a given multiphysics model, represented as a PDE, 
has a unique solution.

PDE solution The solution to a multiphysics problem in response to specific values of 
the control variables.

performance constraint A constraint involving the multiphysics simulation result. 
Performance constraints in general have the same structure as the objective function, 
and are as expensive to evaluate.

pointwise inequality constraint An inequality constraint in a PDE-constrained 
optimization problem involving an explicit expression in terms of the control variables. 
The constraint sets lower and upper bounds on the expression for node points in a set 
of geometric entities of the same dimension.
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sensitivity problem The sensitivity problem determines the gradient of an objective 
function with respect to the control variables.

solution variables Designates variables that are not control variables, for example, field 
variables and global variables.

superbasic variable A variable is superbasic if it is not currently at one of its bounds.
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